OptNet: Differentiable Optimization as a Layer in Neural Networks

Overview

OptNet: Differentiable Optimization as a Layer in Neural Networks

This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our ICML 2017 paper OptNet: Differentiable Optimization as a Layer in Neural Networks.

If you find this repository helpful in your publications, please consider citing our paper.

@InProceedings{amos2017optnet,
  title = {{O}pt{N}et: Differentiable Optimization as a Layer in Neural Networks},
  author = {Brandon Amos and J. Zico Kolter},
  booktitle = {Proceedings of the 34th International Conference on Machine Learning},
  pages = {136--145},
  year = {2017},
  volume = {70},
  series = {Proceedings of Machine Learning Research},
  publisher ={PMLR},
}

Informal Introduction

Mathematical optimization is a well-studied language of expressing solutions to many real-life problems that come up in machine learning and many other fields such as mechanics, economics, EE, operations research, control engineering, geophysics, and molecular modeling. As we build our machine learning systems to interact with real data from these fields, we often cannot (but sometimes can) simply ``learn away'' the optimization sub-problems by adding more layers in our network. Well-defined optimization problems may be added if you have a thorough understanding of your feature space, but oftentimes we don't have this understanding and resort to automatic feature learning for our tasks.

Until this repository, no modern deep learning library has provided a way of adding a learnable optimization layer (other than simply unrolling an optimization procedure, which is inefficient and inexact) into our model formulation that we can quickly try to see if it's a nice way of expressing our data.

See our paper OptNet: Differentiable Optimization as a Layer in Neural Networks and code at locuslab/optnet if you are interested in learning more about our initial exploration in this space of automatically learning quadratic program layers for signal denoising and sudoku.

Setup and Dependencies

  • Python/numpy/PyTorch
  • qpth: Our fast QP solver for PyTorch released in conjunction with this paper.
  • bamos/block: Our intelligent block matrix library for numpy, PyTorch, and beyond.
  • Optional: bamos/setGPU: A small library to set CUDA_VISIBLE_DEVICES on multi-GPU systems.

Denoising Experiments

denoising
├── create.py - Script to create the denoising dataset.
├── plot.py - Plot the results from any experiment.
├── main.py - Run the FC baseline and OptNet denoising experiments. (See arguments.)
├── main.tv.py - Run the TV baseline denoising experiment.
└── run-exps.sh - Run all experiments. (May need to uncomment some lines.)

Sudoku Experiments

  • The dataset we used in our experiments is available in sudoku/data.
sudoku
├── create.py - Script to create the dataset.
├── plot.py - Plot the results from any experiment.
├── main.py - Run the FC baseline and OptNet Sudoku experiments. (See arguments.)
└── models.py - Models used for Sudoku.

Classification Experiments

cls
├── train.py - Run the FC baseline and OptNet classification experiments. (See arguments.)
├── plot.py - Plot the results from any experiment.
└── models.py - Models used for classification.

Acknowledgments

The rapid development of this work would not have been possible without the immense amount of help from the PyTorch team, particularly Soumith Chintala and Adam Paszke.

Licensing

Unless otherwise stated, the source code is copyright Carnegie Mellon University and licensed under the Apache 2.0 License.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022