Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Overview

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS and Windows.

Published at USENIX Security 2017.

Currently missing:

  • full documentation
  • agents for macOS and Windows (except for our test driver)

BibTex:

@inproceedings{schumilo2017kafl,
    author = {Schumilo, Sergej and Aschermann, Cornelius and Gawlik, Robert and Schinzel, Sebastian and Holz, Thorsten},
    title = {{kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels}},
    year = {2017},
    booktitle = {USENIX Security Symposium} 
}

Trophies

Setup

This is a short introduction on how to setup kAFL to fuzz Linux kernel components.

Download kAFL and install necessary components

$ git clone https://github.com/RUB-SysSec/kAFL.git
$ cd kAFL
$ chmod u+x install.sh
$ sudo ./install.sh
$ sudo reboot

Setup VM

  • Create QEMU hard drive image:
$ qemu-img create -f qcow2 linux.qcow2 20G
  • Retrieve an ISO file of the desired OS and install it inside a VM (in this case Ubuntu 16.04 server):
$ wget -O /path/to/where/to/store/ubuntu.iso http://de.releases.ubuntu.com/16.04/ubuntu-16.04.3-server-amd64.iso
$ qemu-system-x86_64 -cpu host -enable-kvm -m 512 -hda linux.qcow2 -cdrom ubuntu.iso -usbdevice tablet
  • Download kAFL and compile the loader agent:
git clone https://github.com/RUB-SysSec/kAFL.git
cd path/to/kAFL/kAFL-Fuzzer/agents
chmod u+x compile.sh
./compile.sh
  • Shutdown the VM

Prepare VM for kAFL fuzzing

  • On the host: Create Overlay and Snapshot Files:
mkdir snapshot && cd snapshot
qemu-img create -b /absolute/path/to/hdd/linux.qcow2 -f qcow2 overlay_0.qcow2
qemu-img create -f qcow2 ram.qcow2 512
  • Start the VM using QEMU-PT:
cd /path/to/kAFL
./qemu-2.9.0/x86_64-softmmu/qemu-system-x86_64 -hdb /path/to/snapshot/ram.qcow2 -hda /path/to/snapshot/overlay_0.qcow2 -machine pc-i440fx-2.6 -serial mon:stdio -enable-kvm -k de -m 512
  • (Optional) Install and load the vulnerable Test Driver:
cd path/to/kAFl/kAFL-Fuzzer/vuln_drivers/simple/linux_x86-64/
chmod u+x load.sh
sudo ./load.sh
  • Execute loader binary which is in path/to/kAFL/kAFL-Fuzzer/agents/linux_x86_64/loader/ as root. VM should freeze. Switch to the QEMU management console and create a snapshot:
# press CTRL-a + c
savevm kafl
q 

Compile and configure kAFL components

  • Edit /path/to/kAFL/kAFL-Fuzzer/kafl.ini (qemu-kafl_location to point to path/to/kAFL/qemu-2.9.0/x86_64-softmmu/qemu-system-x86_64)

  • Compile agents:

cd <KERNEL_AFL_ROOT>/kAFL-Fuzzer/agents
chmod u+x compile.sh
./compile.sh
  • Retrieve address ranges of loaded drivers:
cd /path/to/kAFL/kAFL-Fuzzer
python kafl_info.py /path/to/snapshot/ram.qcow2 /path/to/snapshot/ agents/linux_x86_64/info/info 512 -v

Start Fuzzing!

python kafl_fuzz.py /path/to/snapshot/ram.qcow2 /path/to/snapshot agents/linux_x86_64/fuzzer/kafl_vuln_test 512 /path/to/input/directory /path/to/working/directory -ip0 0xffffffffc0287000-0xffffffffc028b000 -v --Purge

The value ip0 is the address range of the fuzzing target.

Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022