Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Overview

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS and Windows.

Published at USENIX Security 2017.

Currently missing:

  • full documentation
  • agents for macOS and Windows (except for our test driver)

BibTex:

@inproceedings{schumilo2017kafl,
    author = {Schumilo, Sergej and Aschermann, Cornelius and Gawlik, Robert and Schinzel, Sebastian and Holz, Thorsten},
    title = {{kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels}},
    year = {2017},
    booktitle = {USENIX Security Symposium} 
}

Trophies

Setup

This is a short introduction on how to setup kAFL to fuzz Linux kernel components.

Download kAFL and install necessary components

$ git clone https://github.com/RUB-SysSec/kAFL.git
$ cd kAFL
$ chmod u+x install.sh
$ sudo ./install.sh
$ sudo reboot

Setup VM

  • Create QEMU hard drive image:
$ qemu-img create -f qcow2 linux.qcow2 20G
  • Retrieve an ISO file of the desired OS and install it inside a VM (in this case Ubuntu 16.04 server):
$ wget -O /path/to/where/to/store/ubuntu.iso http://de.releases.ubuntu.com/16.04/ubuntu-16.04.3-server-amd64.iso
$ qemu-system-x86_64 -cpu host -enable-kvm -m 512 -hda linux.qcow2 -cdrom ubuntu.iso -usbdevice tablet
  • Download kAFL and compile the loader agent:
git clone https://github.com/RUB-SysSec/kAFL.git
cd path/to/kAFL/kAFL-Fuzzer/agents
chmod u+x compile.sh
./compile.sh
  • Shutdown the VM

Prepare VM for kAFL fuzzing

  • On the host: Create Overlay and Snapshot Files:
mkdir snapshot && cd snapshot
qemu-img create -b /absolute/path/to/hdd/linux.qcow2 -f qcow2 overlay_0.qcow2
qemu-img create -f qcow2 ram.qcow2 512
  • Start the VM using QEMU-PT:
cd /path/to/kAFL
./qemu-2.9.0/x86_64-softmmu/qemu-system-x86_64 -hdb /path/to/snapshot/ram.qcow2 -hda /path/to/snapshot/overlay_0.qcow2 -machine pc-i440fx-2.6 -serial mon:stdio -enable-kvm -k de -m 512
  • (Optional) Install and load the vulnerable Test Driver:
cd path/to/kAFl/kAFL-Fuzzer/vuln_drivers/simple/linux_x86-64/
chmod u+x load.sh
sudo ./load.sh
  • Execute loader binary which is in path/to/kAFL/kAFL-Fuzzer/agents/linux_x86_64/loader/ as root. VM should freeze. Switch to the QEMU management console and create a snapshot:
# press CTRL-a + c
savevm kafl
q 

Compile and configure kAFL components

  • Edit /path/to/kAFL/kAFL-Fuzzer/kafl.ini (qemu-kafl_location to point to path/to/kAFL/qemu-2.9.0/x86_64-softmmu/qemu-system-x86_64)

  • Compile agents:

cd <KERNEL_AFL_ROOT>/kAFL-Fuzzer/agents
chmod u+x compile.sh
./compile.sh
  • Retrieve address ranges of loaded drivers:
cd /path/to/kAFL/kAFL-Fuzzer
python kafl_info.py /path/to/snapshot/ram.qcow2 /path/to/snapshot/ agents/linux_x86_64/info/info 512 -v

Start Fuzzing!

python kafl_fuzz.py /path/to/snapshot/ram.qcow2 /path/to/snapshot agents/linux_x86_64/fuzzer/kafl_vuln_test 512 /path/to/input/directory /path/to/working/directory -ip0 0xffffffffc0287000-0xffffffffc028b000 -v --Purge

The value ip0 is the address range of the fuzzing target.

Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023