Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Overview

Deep learning algorithms for muon momentum estimation in the CMS Trigger System

The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider (LHC). During a run, it generates about 40 TB data per second. Since It is not feasible to readout and store such a vast amount of data, so a trigger system selects and stores only interesting events or events likely to reveal new physics phenomena. The goal of this project is to benchmark the muon momentum estimation performance of Fully Connected Neural Networks (FCNN), Convolutional Neural Networks (CNN), and Graph Neural Networks (GNN), on the prompt and displaced muon samples detected by CSC stations at CMS to aid trigger system's transverse momentum (pT) muon estimation.

About

In the project FCNNs, CNNs, and GNNs are trained and evaluated on the prompt muon samples (two versions of same samples with different sampling approaches), and displaced muon samples generated by Monte Carlo simulation. The other details are -

  • Target Variables: Three types of predictions are benchmarked with each type of algorithm.
Target Loss
1/Transverse_momentum (1/pT) Mean Square Error (MSE)
Transverse Momentum (pT)
4 class classification
(0-10 GeV, 10-30 GeV, 30-100 GeV, >100 GeV)
Focal Loss
  • Validation Scheme: 10 fold out-of-fold predictions (i.e. dataset is splitted into 10 small batches, out of them 8 are used for training, 1 as validation dataset and 1 as holdout. This holdout is changed 10 times to give the final scores.)

  • Metrices Tracked:

    • MAE - Mean Absolute Error at a given transverse momentum (pT).
    • MAE/pT - Ratio of Mean Absolute Error to transverse momentum at a given transverse momentum.
    • Acurracy - At a given pT, muon samples can be divided into two classes, one muons with pT more than this given and another class of muons with pT less than this. So, Acurracy at a given pT is the accuracy for these two classes.
    • F1-score (of class pT>x GeV) - At a given pT, this is the f1-score of the class of muons with pT more than this given pT.
    • F1-score (of class pT - At a given pT, this is the f1-score of the class of muons with pT less than this given pT.
    • ROC-AUC Score of each class - only in case of four class classification
  • Preprocessing: Standard scaling of input coordinates

How to use

  1. Make sure that all the libraries mentioned in requirements.txt are installed
  2. Clone the repo
https://github.com/lastnameis-borah/CMS_moun_transverse_momentum_estimation.git
  1. Change current directory to the cloned directory and execute main.py with the required arguments
python main.py --path='/kaggle/input/cmsnewsamples/new-smaples.csv' \
                --dataset='prompt_new'\
                --predict='pT'\
                --model='FCNN'\
                --epochs=50 \
                --batch_size=512\
                --folds="0,1,2,3,4,5,6,7,8,9" \
                --results='/kaggle/working/results'

Note: Give absolute paths as argument

Arguments

  1. path - path of the csv having the coordinates of generated muon samples
  2. dataset - specify the samples that you are using (i.e. prompt_new, prompt_old, or displaced)
  3. predict - target variable (i.e. pT, 1/pT, or pT_classes)
  4. model - architecture to use (i.e. FCNN, CNN, or GNN)
  5. epochs - max number of epochs to train, if score converges than due to early-stopping training may stop earlier
  6. batchsize - number of samples in a batch
  7. folds - a string containing the info on which folds one wants the result
  8. results - path of the directory to save the results

Results

Regressing 1/pT

Metric Prompt Muons Samples-1 Prompt Muons Samples-2 Displaced Muons Samples
MAE/pT
MAE
Accuracy
F1-score (pT>x)
F1-score (pT

Regressing pT

Metric Prompt Muons Samples-1 Prompt Muons Samples-2 Displaced Muons Samples
MAE/pT
MAE
Accuracy
F1-score (pT>x)
F1-score (pT

Four class classification

  • Prompt Muons Samples-1
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.990 0.970 0.977 0.969
CNN 0.991 0.973 0.980 0.983
  • Prompt Muons Samples-2
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.990 0.975 0.981 0.958
CNN 0.991 0.976 0.983 0.983
  • Displaced Muons Samples
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.944 0.898 0.910 0.839
CNN 0.958 0.907 0.932 0.910
Owner
anuragB
Petroleum Engineering Undergrad. IITM Data Science Undergrad.
anuragB
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022