BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

Overview

BasicRL: easy and fundamental codes for deep reinforcement learning

BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

It is developped for beginner in DRL with the following advantages:

  • Practical: it fills the gap between the theory and practice of DRL.
  • Easy: the codes is easier than OpenAI Spinning Up in terms of achieving the same functionality.
  • Lightweight: the core codes <1,500 lines, using Pytorch ans OpenAI Gym.

The following DRL algorithms is contained in BasicRL:

  • DQN, DoubleDQN, DuelingDQN, NoisyDQN, DistributionalDQN
  • REINFORCE, VPG, PPO, DDPG, TD3 and SAC
  • PerDQN, N-step-learning DQN and Rainbow are coming

The differences compared to OpenAI Spinning Up:

  • Pros: BasicRL is currently can be used on Windows and Linux (it hasn't been extensively tested on OSX). However, Spinning Up is only supported on Linux and OSX.
  • Cons: OpenMPI is not used in BasicRL so it is slower than Spinning Up.
  • Others: BasicRL considers an agent as a class.

The differences compared to rainbow-is-all-you-need:

  • Pros: BasicRL reuse the common codes, so it is lightwight. Besides, BasicRL modifies the form of output and plot, it can use the Spinning Up's log file.
  • Others: BasicRL uses inheritance of classes, so you can see key differences between each other.

File Structure

BasicRL:

├─pg    
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py    
│  └─utils.py      
│  └─logx.py     
├─pg_cpu     
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py  
│  └─utils.py  
│  └─logx.py  
├─rainbow     
│  └─dqn/double_dqn/dueling_dqn/moisy_dqn/distributional_dqn.py  
│  └─utils.py   
│  └─logx.py   
├─requirements.txt  
└─plot.py

Code Structure

Core code

xxx.py(dqn.py...)

- agent class:
  - init
  - compute loss
  - update
  - get action
  - test agent
  - train
- main

Common code

utils.py

- expereience replay buffer: On-policy/Off-policy replay buffer
- network  

logx.py

- Logger
- EpochLogger

plot.py

- plot data
- get datasets
- get all datasets
- make plots
- main

Installation

BasicRL is tested on Anaconda virtual environment with Python3.7+

conda create -n BasicRL python=3.7
conda activate BasicRL

Clone the repository:

git clone [email protected]:RayYoh/BasicRL.git
cd BasicRL

Install required libraries:

pip install -r requirements.txt

BasicRL code library makes local experiments easy to do, and there are two ways to run them: either from the command line, or through function calls in scripts.

Experiment

After testing, Basic RL runs perfectly, but its performance has not been tested. Users can tweak the parameters and change the experimental environment to output final results for comparison. Possible outputs are shown below:

dqn pg

Contribution

BasicRL is not yet complete and I will continue to maintain it. To any interested in making BasicRL better, any contribution is warmly welcomed. If you want to contribute, please send a Pull Request.
If you are not familiar with creating a Pull Request, here are some guides:

Related Link

Citation

To cite this repository:

@misc{lei,
  author = {Lei Yao},
  title = {BasicRL: easy and fundamental codes for deep reinforcement learning},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/RayYoh/BasicRL}},
}
Owner
RayYoh
Research interests: Robot Learning, Robotic
RayYoh
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022