3D Generative Adversarial Network

Overview

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

This repository contains pre-trained models and sampling code for the 3D Generative Adversarial Network (3D-GAN) presented at NIPS 2016.

http://3dgan.csail.mit.edu

Prerequisites

Torch

We use Torch 7 (http://torch.ch) for our implementation with these additional packages:

Visualization

  • Basic visualization: MATLAB (tested on R2016b)
  • Advanced visualization: Python 2.7 with package numpy, matplotlib, scipy and vtk (version 5.10.1)

Note: for advanced visualization, the version of vtk has to be 5.10.1, not above. It is available in the package list of common Python distributions like Anaconda

Installation

Our current release has been tested on Ubuntu 14.04.

Cloning the repository

git clone [email protected]:zck119/3dgan-release.git
cd 3dgan-release

Downloading pretrained models

For CPU (947 MB):

./download_models_cpu.sh

For GPU (618 MB):

./download_models_gpu.sh

Downloading latent vector inputs for demo

./download_demo_inputs.sh

Guide

Synthesizing shapes (main.lua)

We show how to synthesize shapes with our pre-trained models. The file (main.lua) has the following options.

  • -gpu ID: GPU ID (starting from 1). Set to 0 to use CPU only.
  • -class CLASSNAME: synthesize shapes for the class CLASSNAME. We currently support five classes (car, chair, desk, gun, and sofa). Use all to generate shapes for each class.
  • -sample: whether to sample input latent vectors from an i.i.d. uniform distribution, or to generate shapes with demo vectors loaded from ./demo_inputs/CLASSNAME.mat
  • -bs BATCH_SIZE: use batch size of BATCH_SIZE during network forwarding
  • -ss SAMPLE_SIZE: set the number of generated shapes to SAMPLE_SIZE. This option is only available in -sample mode.

Usages include

  • Synthesize chairs with pre-sampled demo inputs and a CPU
th main.lua -gpu 0 -class chair 
  • Randomly sample 150 desks with GPU 1 and a batch size of 50
th main.lua -gpu 1 -class desk -bs 50 -sample -ss 150 
  • Randomly sample 150 shapes of each category with GPU 1 and a batch size of 50
th main.lua -gpu 1 -class all -bs 50 -sample -ss 150 

The output is saved under folder ./output, with class_name_demo.mat for shapes generated by predetermined demo inputs (z in our paper), and class_name_sample.mat for randomly sampled 3D shapes. The variable inputs in the .mat file correponds to the input latent representation, and the variable voxels corresponds to the generated 3D shapes by our network.

Visualization

We offer two ways of visualizing results, one in MATLAB and the other in Python. We used the Python visualization in our paper. The MATLAB visualization is easier to install and run, but its output has a lower quality compared with the Python one.

MATLAB: Please use the function visualization/matlab/visualize.m for visualization. The MATLAB code allows users to either display rendered objects or save them as images. The script also supports downsampling and thresholding for faster rendering. The color of voxels represents the confidence value.

Options include

  • inputfile: the .mat file that saves the voxel matrices
  • indices: the indices of objects in the inputfile that should be rendered. The default value is 0, which stands for rendering all objects.
  • step (s): downsample objects via a max pooling of step s for efficiency. The default value is 4 (64 x 64 x 64 -> 16 x 16 x 16).
  • threshold: voxels with confidence lower than the threshold are not displayed
  • outputprefix:
    • when not specified, Matlab shows figures directly.
    • when specified, Matlab stores rendered images of objects at outputprefix_%i.bmp, where %i is the index of objects

Usage (after running th main.lua -gpu 0 -class chair, in MATLAB, in folder visualization/matlab):

visualize('../../output/chair_demo.mat', 0, 2, 0.1, 'chair')

The visualization might take a while. The obtained rendering (chair_1/3/4/5.bmp) should look as follows.

Python: Options for the Python visualization include

  • -t THRESHOLD: voxels with confidence lower than the threshold are not displayed. The default value is 0.1.
  • -i ID: the index of objects in the inputfile that should be rendered (one based). The default value is 1.
  • -df STEPSIZE: downsample objects via a max pooling of step STEPSIZE for efficiency. Currently supporting STEPSIZE 1, 2, and 4. The default value is 1 (i.e. no downsampling).
  • -dm METHOD: downsample method, where mean stands for average pooling and max for max pooling. The default is max pooling.
  • -u BLOCK_SIZE: set the size of the voxels to BLOCK_SIZE. The default value is 0.9.
  • -cm: whether to use a colormap to represent voxel occupancy, or to use a uniform color
  • -mc DISTANCE: whether to keep only the maximal connected component, where voxels of distance no larger than DISTANCE are considered connected. Set to 0 to disable this function. The default value is 3.

Usage:

python visualize.py chair_demo.mat -u 0.9 -t 0.1 -i 1 -mc 2

Reference

@inproceedings{3dgan,
  title={{Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling}},
  author={Wu, Jiajun and Zhang, Chengkai and Xue, Tianfan and Freeman, William T and Tenenbaum, Joshua B},
  booktitle={Advances In Neural Information Processing Systems},
  pages={82--90},
  year={2016}
}

For any questions, please contact Jiajun Wu ([email protected]) and Chengkai Zhang ([email protected]).

Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022