The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Related tags

Deep LearningPIRender
Overview

Website | ArXiv | Get Start | Video

PIRenderer

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering" (ICCV2021)

The proposed PIRenderer can synthesis portrait images by intuitively controlling the face motions with fully disentangled 3DMM parameters. This model can be applied to tasks such as:

  • Intuitive Portrait Image Editing

    Intuitive Portrait Image Control

    Pose & Expression Alignment

  • Motion Imitation

    Same & Corss-identity Reenactment

  • Audio-Driven Facial Reenactment

    Audio-Driven Reenactment

News

  • 2021.9.20 Code for PyTorch is available!

Colab Demo

Coming soon

Get Start

1). Installation

Requirements

  • Python 3
  • PyTorch 1.7.1
  • CUDA 10.2

Conda Installation

# 1. Create a conda virtual environment.
conda create -n PIRenderer python=3.6
conda activate PIRenderer
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. Install other dependencies
pip install -r requirements.txt

2). Dataset

We train our model using the VoxCeleb. You can download the demo dataset for inference or prepare the dataset for training and testing.

Download the demo dataset

The demo dataset contains all 514 test videos. You can download the dataset with the following code:

./scripts/download_demo_dataset.sh

Or you can choose to download the resources with these links:

Google Driven & BaiDu Driven with extraction passwords ”p9ab“

Then unzip and save the files to ./dataset

Prepare the dataset

  1. The dataset is preprocessed follow the method used in First-Order. You can follow the instructions in their repo to download and crop videos for training and testing.

  2. After obtaining the VoxCeleb videos, we extract 3DMM parameters using Deep3DFaceReconstruction.

    The folder are with format as:

    ${DATASET_ROOT_FOLDER}
    └───path_to_videos
    		└───train
    				└───xxx.mp4
    				└───xxx.mp4
    				...
    		└───test
    				└───xxx.mp4
    				└───xxx.mp4
    				...
    └───path_to_3dmm_coeff
    		└───train
    				└───xxx.mat
    				└───xxx.mat
    				...
    		└───test
    				└───xxx.mat
    				└───xxx.mat
    				...
    
  3. We save the video and 3DMM parameters in a lmdb file. Please run the following code to do this

    python scripts/prepare_vox_lmdb.py \
    --path path_to_videos \
    --coeff_3dmm_path path_to_3dmm_coeff \
    --out path_to_output_dir

3). Training and Inference

Inference

The trained weights can be downloaded by running the following code:

./scripts/download_weights.sh

Or you can choose to download the resources with these links: coming soon. Then save the files to ./result/face

Reenactment

Run the the demo for face reenactment:

python -m torch.distributed.launch --nproc_per_node=1 --master_port 12345 inference.py \
--config ./config/face.yaml \
--name face \
--no_resume \
--output_dir ./vox_result/face_reenactment

The output results are saved at ./vox_result/face_reenactment

Intuitive Control

coming soon

Train

Our model can be trained with the following code

python -m torch.distributed.launch --nproc_per_node=4 --master_port 12345 train.py \
--config ./config/face.yaml \
--name face

Citation

If you find this code is helpful, please cite our paper

@misc{ren2021pirenderer,
      title={PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering}, 
      author={Yurui Ren and Ge Li and Yuanqi Chen and Thomas H. Li and Shan Liu},
      year={2021},
      eprint={2109.08379},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

We build our project base on imaginaire. Some dataset preprocessing methods are derived from video-preprocessing.

Owner
Ren Yurui
Ren Yurui
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022