This repository contains a toolkit for collecting, labeling and tracking object keypoints

Overview

Object Keypoint Tracking

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

The project allows collecting images from multiple viewpoints using a robot with a wrist mounted camera. These image sequences can then be labeled using an easy to use user interface, StereoLabel.

StereoLabel keypoint labeling

Once the images are labeled, a model can be learned to detect keypoints in the images and compute 3D keypoints in the camera's coordinate frame.

Installation

External Dependencies:

  • HUD
  • ROS melodic/noetic

Install HUD. Then install dependencies with pip install -r requirements.txt and finally install the package using pip3 install -e ..

Usage

Here we describe the process we used to arrive at our labeled datasets and learned models.

Calibration and setup

First, calibrate your camera and obtain a hand-eye-calibration. Calibrating the camera can be done using Kalibr. Hand-eye-calibration can be done with the ethz-asl/hand_eye_calibration or easy_handeye packages.

The software currently assumes that the Kalibr pinhole-equi camera model was used when calibrating the camera.

Kalibr will spit out a yaml file like the one at config/calibration.yaml. This should be passed in as the --calibration argument for label.py and other scripts.

Once you have obtained the hand-eye calibration, configure your robot description so that the tf tree correctly is able to transform poses from the base frame to the camera optical frame.

Collecting data

The script scripts/collect_bags.py is a helper program to assist in collecting data. It will use rosbag to record the camera topics and and transform messages.

Run it with python3 scripts/collect_bags.py --out .

Press enter to start recording a new sequence. Recording will start after a 5 second grace period, after which the topics will be recorded for 30 seconds. During the 30 seconds, slowly guide the robot arm to different viewpoints observing your target objects.

Encoding data

Since rosbag is not a very convenient or efficient format for our purposes, we encode the data into a format that is easier to work with and uses up less disk space. This is done using the script scripts/encode_bag.py.

Run it with python3 scripts/encode_bags.py --bags --out --calibration .

Labeling data

Valve

First decide how many keypoints you will use for your object class and what their configuration is. Write a keypoint configuration file, like config/valve.json and config/cups.json. For example, in the case of our valve above, we define four different keypoints, which are of two types. The first type is the center keypoint type and the second is the spoke keypoint type. For our valve, there are three spokes, so we write our keypoint configuration as:

{ "keypoint_config": [1, 3] }

What this means, is that there will first be a keypoint of the first type and then three keypoints of the next type. Save this file for later.

StereoLabel can be launched with python3 scripts/label.py . To label keypoints, click on the keypoints in the same order in each image. Make sure to label the points consistent with the keypoint configuration that you defined, so that the keypoints end up on the right heatmaps downstream.

If you have multiple objects in the scene, it is important that you annotate one object at the time, sticking to the keypoint order, as the tool makes the assumption that one object's keypoints follow each other. The amount of keypoints you label should equal the amount of objects times the total number of keypoints per object.

Once you have labeled an equal number of points on the left and right image, points will be backprojected, so that you can make sure that everything is correctly configured and that you didn't accidentally label the points in the wrong order. The points are saved at the same time to a file keypoints.json in each scene's directory.

Here are some keyboard actions the tool supports:

  • Press a to change the left frame with a random frame from the current sequence.
  • Press b to change the right frame with a random frame from the current sequence.
  • Press to go to next sequence, after you labeled a sequence.

Switching frames is especially useful, if for example in one viewpoint a keypoint is occluded and it is hard to annotate accurately.

Once the points have been saved and backprojected, you can freely press a and b to swap out the frames to different ones in the sequence. It will project the 3D points back into 2D onto the new frames. You can check that the keypoints project nicely to each frame. If not, you likely misclicked, the viewpoints are too close to each other, there could be an issue with your intrinsics or hand-eye calibration or the camera poses are not accurate for some other reason.

Checking the data

Once all your sequences have been labeled, you can check that the labels are correct on all frames using python scripts/show_keypoints.py , which will play the images one by one and show the backprojected points.

Learning a model

First, download the weights for the CornerNet backbone model. This can be done from the CornerNet repository. We use the CornerNet-Squeeze model. Place the file at models/corner_net.pkl.

You can train a model with python scripts/train.py --train --val . Where --train points to the directory containing your training scenes. --val points to the directory containing your validation scenes.

Once done, you can package a model with python scripts/package_model.py --model lightning_logs/version_x/checkpoints/ .ckpt --out model.pt

You can then run and check the metrics on a test set using python scripts/eval_model.py --model model.pt --keypoints .

General tips

Here are some general tips that might be of use:

  • Collect data at something like 4-5 fps. Generally, frames that are super close to each other aren't that useful and you don't really need every single frame. I.e. configure your camera node to only publish image messages at that rate.
  • Increase the publishing rate of your robot_state_publisher node to something like 100 or 200.
  • Move your robot slowly when collecting the data such that the time synchronization between your camera and robot is not that big of a problem.
  • Keep the scenes reasonable.
  • Collect data in all the operating conditions in which you will want to be detecting keypoints at.
Owner
ETHZ ASL
ETHZ ASL
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023