This repository contains a toolkit for collecting, labeling and tracking object keypoints

Overview

Object Keypoint Tracking

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

The project allows collecting images from multiple viewpoints using a robot with a wrist mounted camera. These image sequences can then be labeled using an easy to use user interface, StereoLabel.

StereoLabel keypoint labeling

Once the images are labeled, a model can be learned to detect keypoints in the images and compute 3D keypoints in the camera's coordinate frame.

Installation

External Dependencies:

  • HUD
  • ROS melodic/noetic

Install HUD. Then install dependencies with pip install -r requirements.txt and finally install the package using pip3 install -e ..

Usage

Here we describe the process we used to arrive at our labeled datasets and learned models.

Calibration and setup

First, calibrate your camera and obtain a hand-eye-calibration. Calibrating the camera can be done using Kalibr. Hand-eye-calibration can be done with the ethz-asl/hand_eye_calibration or easy_handeye packages.

The software currently assumes that the Kalibr pinhole-equi camera model was used when calibrating the camera.

Kalibr will spit out a yaml file like the one at config/calibration.yaml. This should be passed in as the --calibration argument for label.py and other scripts.

Once you have obtained the hand-eye calibration, configure your robot description so that the tf tree correctly is able to transform poses from the base frame to the camera optical frame.

Collecting data

The script scripts/collect_bags.py is a helper program to assist in collecting data. It will use rosbag to record the camera topics and and transform messages.

Run it with python3 scripts/collect_bags.py --out .

Press enter to start recording a new sequence. Recording will start after a 5 second grace period, after which the topics will be recorded for 30 seconds. During the 30 seconds, slowly guide the robot arm to different viewpoints observing your target objects.

Encoding data

Since rosbag is not a very convenient or efficient format for our purposes, we encode the data into a format that is easier to work with and uses up less disk space. This is done using the script scripts/encode_bag.py.

Run it with python3 scripts/encode_bags.py --bags --out --calibration .

Labeling data

Valve

First decide how many keypoints you will use for your object class and what their configuration is. Write a keypoint configuration file, like config/valve.json and config/cups.json. For example, in the case of our valve above, we define four different keypoints, which are of two types. The first type is the center keypoint type and the second is the spoke keypoint type. For our valve, there are three spokes, so we write our keypoint configuration as:

{ "keypoint_config": [1, 3] }

What this means, is that there will first be a keypoint of the first type and then three keypoints of the next type. Save this file for later.

StereoLabel can be launched with python3 scripts/label.py . To label keypoints, click on the keypoints in the same order in each image. Make sure to label the points consistent with the keypoint configuration that you defined, so that the keypoints end up on the right heatmaps downstream.

If you have multiple objects in the scene, it is important that you annotate one object at the time, sticking to the keypoint order, as the tool makes the assumption that one object's keypoints follow each other. The amount of keypoints you label should equal the amount of objects times the total number of keypoints per object.

Once you have labeled an equal number of points on the left and right image, points will be backprojected, so that you can make sure that everything is correctly configured and that you didn't accidentally label the points in the wrong order. The points are saved at the same time to a file keypoints.json in each scene's directory.

Here are some keyboard actions the tool supports:

  • Press a to change the left frame with a random frame from the current sequence.
  • Press b to change the right frame with a random frame from the current sequence.
  • Press to go to next sequence, after you labeled a sequence.

Switching frames is especially useful, if for example in one viewpoint a keypoint is occluded and it is hard to annotate accurately.

Once the points have been saved and backprojected, you can freely press a and b to swap out the frames to different ones in the sequence. It will project the 3D points back into 2D onto the new frames. You can check that the keypoints project nicely to each frame. If not, you likely misclicked, the viewpoints are too close to each other, there could be an issue with your intrinsics or hand-eye calibration or the camera poses are not accurate for some other reason.

Checking the data

Once all your sequences have been labeled, you can check that the labels are correct on all frames using python scripts/show_keypoints.py , which will play the images one by one and show the backprojected points.

Learning a model

First, download the weights for the CornerNet backbone model. This can be done from the CornerNet repository. We use the CornerNet-Squeeze model. Place the file at models/corner_net.pkl.

You can train a model with python scripts/train.py --train --val . Where --train points to the directory containing your training scenes. --val points to the directory containing your validation scenes.

Once done, you can package a model with python scripts/package_model.py --model lightning_logs/version_x/checkpoints/ .ckpt --out model.pt

You can then run and check the metrics on a test set using python scripts/eval_model.py --model model.pt --keypoints .

General tips

Here are some general tips that might be of use:

  • Collect data at something like 4-5 fps. Generally, frames that are super close to each other aren't that useful and you don't really need every single frame. I.e. configure your camera node to only publish image messages at that rate.
  • Increase the publishing rate of your robot_state_publisher node to something like 100 or 200.
  • Move your robot slowly when collecting the data such that the time synchronization between your camera and robot is not that big of a problem.
  • Keep the scenes reasonable.
  • Collect data in all the operating conditions in which you will want to be detecting keypoints at.
Owner
ETHZ ASL
ETHZ ASL
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022