Lightweight Machine Learning Experiment Logging ๐Ÿ“–

Overview

A Lightweight Logger for ML Experiments ๐Ÿ“–

Pyversions PyPI version Code style: black Colab

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and combination of multi-configuration runs. For a quickstart checkout the notebook blog ๐Ÿš€

The API ๐ŸŽฎ

from mle_logging import MLELogger

# Instantiate logging to experiment_dir
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="experiment_dir/",
                model_type='torch')

time_tic = {'num_updates': 10, 'num_epochs': 1}
stats_tic = {'train_loss': 0.1234, 'test_loss': 0.1235}

# Update the log with collected data & save it to .hdf5
log.update(time_tic, stats_tic)
log.save()

You can also log model checkpoints, matplotlib figures and other .pkl compatible objects.

# Save a model (torch, tensorflow, sklearn, jax, numpy)
import torchvision.models as models
model = models.resnet18()
log.save_model(model)

# Save a matplotlib figure as .png
fig, ax = plt.subplots()
log.save_plot(fig)

# You can also save (somewhat) arbitrary objects .pkl
some_dict = {"hi" : "there"}
log.save_extra(some_dict)

Or do everything in a single line...

log.update(time_tic, stats_tic, model, fig, extra, save=True)

File Structure & Re-Loading ๐Ÿ“š

The MLELogger will create a nested directory, which looks as follows:

experiment_dir
โ”œโ”€โ”€ extra: Stores saved .pkl object files
โ”œโ”€โ”€ figures: Stores saved .png figures
โ”œโ”€โ”€ logs: Stores .hdf5 log files (meta, stats, time)
โ”œโ”€โ”€ models: Stores different model checkpoints
    โ”œโ”€โ”€ final: Stores most recent checkpoint
    โ”œโ”€โ”€ every_k: Stores every k-th checkpoint provided in update
    โ”œโ”€โ”€ top_k: Stores portfolio of top-k checkpoints based on performance
โ”œโ”€โ”€ tboards: Stores tensorboards for model checkpointing
โ”œโ”€โ”€ .json: Copy of configuration file (if provided)

For visualization and post-processing load the results via

>> log_out.meta.keys() # odict_keys(['experiment_dir', 'extra_storage_paths', 'fig_storage_paths', 'log_paths', 'model_ckpt', 'model_type']) # >>> log_out.stats.keys() # odict_keys(['test_loss', 'train_loss']) # >>> log_out.time.keys() # odict_keys(['time', 'num_epochs', 'num_updates', 'time_elapsed']) ">
from mle_logging import load_log
log_out = load_log("experiment_dir/")

# The results can be accessed via meta, stats and time keys
# >>> log_out.meta.keys()
# odict_keys(['experiment_dir', 'extra_storage_paths', 'fig_storage_paths', 'log_paths', 'model_ckpt', 'model_type'])
# >>> log_out.stats.keys()
# odict_keys(['test_loss', 'train_loss'])
# >>> log_out.time.keys()
# odict_keys(['time', 'num_epochs', 'num_updates', 'time_elapsed'])

If an experiment was aborted, you can reload and continue the previous run via the reload=True option:

log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="experiment_dir/",
                model_type='torch',
                reload=True)

Installation โณ

A PyPI installation is available via:

pip install mle-logging

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/RobertTLange/mle-logging.git
cd mle-logging
pip install -e .

Advanced Options ๐Ÿšด

Merging Multiple Logs ๐Ÿ‘ซ

Merging Multiple Random Seeds ๐ŸŒฑ + ๐ŸŒฑ

>> log.eval_ids # ['seed_1', 'seed_2'] ">
from mle_logging import merge_seed_logs
merge_seed_logs("multi_seed.hdf", "experiment_dir/")
log_out = load_log("experiment_dir/")
# >>> log.eval_ids
# ['seed_1', 'seed_2']

Merging Multiple Configurations ๐Ÿ”– + ๐Ÿ”–

>> log.eval_ids # ['config_2', 'config_1'] # >>> meta_log.config_1.stats.test_loss.keys() # odict_keys(['mean', 'std', 'p50', 'p10', 'p25', 'p75', 'p90'])) ">
from mle_logging import merge_config_logs, load_meta_log
merge_config_logs(experiment_dir="experiment_dir/",
                  all_run_ids=["config_1", "config_2"])
meta_log = load_meta_log("multi_config_dir/meta_log.hdf5")
# >>> log.eval_ids
# ['config_2', 'config_1']
# >>> meta_log.config_1.stats.test_loss.keys()
# odict_keys(['mean', 'std', 'p50', 'p10', 'p25', 'p75', 'p90']))

Plotting of Logs ๐Ÿง‘โ€๐ŸŽจ

meta_log = load_meta_log("multi_config_dir/meta_log.hdf5")
meta_log.plot("train_loss", "num_updates")

Storing Checkpoint Portfolios ๐Ÿ“‚

Logging every k-th checkpoint update โ— โฉ ... โฉ โ—

# Save every second checkpoint provided in log.update (stored in models/every_k)
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir='every_k_dir/',
                model_type='torch',
                ckpt_time_to_track='num_updates',
                save_every_k_ckpt=2)

Logging top-k checkpoints based on metric ๐Ÿ”ฑ

# Save top-3 checkpoints provided in log.update (stored in models/top_k)
# Based on minimizing the test_loss metric
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="top_k_dir/",
                model_type='torch',
                ckpt_time_to_track='num_updates',
                save_top_k_ckpt=3,
                top_k_metric_name="test_loss",
                top_k_minimize_metric=True)

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue ๐Ÿค— . Here are some features I want to implement for the next release:

  • Add a progress bar if total number of updates is specified
  • Add Weights and Biases Backend Support
  • Extend Tensorboard logging (for JAX/TF models)
Comments
  • Make `pickle5` requirement Python version dependent

    Make `pickle5` requirement Python version dependent

    The pickle5 dependency forces python < 3.8. If I understand it correctly, pickle5 is only there to backport pickle features that were added with Python 3.8, right? I modified the dependency to only apply for Python < 3.8. With this I was able to install mle-logging in my Python 3.9 environment.

    I also modified the only place where pickle5 was used. Didn't test anything, I was hoping this PR would trigger some tests to make sure I didn't break anything (didn't want to install all those test dependencies locally :P).

    opened by denisalevi 2
  • Missing sample json config files break colab demo

    Missing sample json config files break colab demo

    Hello!

    Just read your blogpost and ~50% of the way through the colab demo, and I have to say that so far it looks like this project has the potential to be profoundly clarifying in how it simplifies & abstracts various pieces of key experiment logic that otherwise suffers from unnecessary complexity. As a PhD student who has had to refactor my whole experimental configuration workflow more times than I would like to admit to even myself, I'm super excited to try out your logger!

    I'd also like to commend you for how to-the-point your choice of explanatory examples were for the blogpost. Too many frameworks fill their docs with a bunch of overly-simplistic toy problems and fail to bridge the gap between these and a real experimental situation (e.g. the elegant layout of your multi-seed, multi-config experiment

    That said, my experience working through your demo was interrupted once I reached the section "Log Different Random Seeds for Same Configuration". It seems this code cell references a file called "config_1.json", which doesnt exist. While I'm sure I could figure out a simple json file with 1-2 example items, this kind of guesswork distracts immensely from the otherwise very elegant flow from simple to complex that you've set up. I also assume your target audience stretches further than experienced coders, so providing a simple demo config file to reduce the time from reading->coding seems worthwhile.

    tldr; the colab needs 1-2 demo config json files

    opened by JacobARose 1
  • Add `wandb` support

    Add `wandb` support

    I want to add a weights&biases backend which performs automatic grouping across seeds/search experiments. The credentials can be passed as options at initialization of MLELogger and a WandbLogger object has to be added.

    When calling log.update this will then automatically forward all info with correct grouping by project/search/config/seed to W&B.

    Think about how to integrate gradients/weights from flax/jax models in a natural way (tree flattening?).

    opened by RobertTLange 0
  • Merge `experiment_dir` for different seeds into single one

    Merge `experiment_dir` for different seeds into single one

    I would like to have utilities for merging two experiments which are identical except for the seed_id they used (probably only for the multiple-configs case). Steps should include something like this:

      1. Check that experiments are actually identical.
      1. Identify different seeds.
      1. Create new results directory.
      1. Copy over extra/, figures/ for different seeds.
      1. Open both logs (for all configs) and combine them.
      1. Clean-up old directories for different experiments.
    opened by RobertTLange 0
  • [Bug]

    [Bug] "OSError: Can't write data" if `what_to_track` has certain Types

    Code to recreate:

    from mle_logging import MLELogger
    
    # Instantiate logging to experiment_dir
    log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                    what_to_track=['train_loss', 'test_loss'],
                    experiment_dir="experiment_dir/",
                    config_dict={"train_config": {"lrate": 0.01}},
                    use_tboard=False,
                    model_type='torch',
                    print_every_k_updates=1,
                    verbose=True)
    
    # Save some time series statistics
    time_tic = {'num_updates': 10, 'num_epochs': 1}
    stats_tic = {'train_loss': 1, 'test_loss': 1}
    
    # Update the log with collected data & save it to .hdf5
    log.update(time_tic, stats_tic)
    log.save()
    

    Output from the console:

    Traceback (most recent call last):
      File "mle-log-test.py", line 19, in <module>
        log.save()
      File "/home/luc/.local/lib/python3.8/site-packages/mle_logging/mle_logger.py", line 417, in save
        write_to_hdf5(
      File "/home/luc/.local/lib/python3.8/site-packages/mle_logging/utils.py", line 74, in write_to_hdf5
        h5f.create_dataset(
      File "/home/luc/.local/lib/python3.8/site-packages/h5py/_hl/group.py", line 149, in create_dataset
        dsid = dataset.make_new_dset(group, shape, dtype, data, name, **kwds)
      File "/home/luc/.local/lib/python3.8/site-packages/h5py/_hl/dataset.py", line 143, in make_new_dset
        dset_id.write(h5s.ALL, h5s.ALL, data)
      File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
      File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
      File "h5py/h5d.pyx", line 232, in h5py.h5d.DatasetID.write
      File "h5py/_proxy.pyx", line 114, in h5py._proxy.dset_rw
    OSError: Can't write data (no appropriate function for conversion path)
    

    The above code is essentially the Getting Started code with the what_to_track Float values swapped out for Ints. If only 1 of the Floats is swapped for an Int, it still works (I guess it casts the Int to a Float?). I also found the same issue if the what_to_track values are Floats from a DeviceArray.

    Please let me know if you have any suggestions or questions!

    opened by DiamonDiva 0
Releases(v0.0.4)
  • v0.0.4(Dec 7, 2021)

    • [x] Add plot details (title, labels) to meta_log.plot()
    • [x] Get rid of time string in sub directories
    • [x] Make log merging more robust
    • [x] Small fixes for mle-monitor release
    • [x] Fix overwrite and make verbose warning
    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Sep 11, 2021)

    ๐ŸŽ‰ Mini-release getting rid of small bugs and adding functionality (๐Ÿ› & ๐Ÿ“ˆ ) :

    1. Add function to store initial model checkpoint for post-processing via log.save_init_model(model).

    2. Fix byte decoding for strings stored as arrays in .hdf5 log file. Previously this only worked for multi seed/config settings.

    3. MLELogger got a new optional argument: config_dict, which allows you to provide a (nested) configuration of your experiment. It will be stored as a .yaml file if you don't provide a path to an alternative configuration file. The file can either be a .json or a .yaml:

    log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                    what_to_track=['train_loss', 'test_loss'],
                    experiment_dir="experiment_dir/",
                    config_dict={"train_config": {"lrate": 0.01}},
                    model_type='torch',
                    verbose=True)
    
    1. The config_dict/ loaded config_fname data will be stored in the meta data of the loaded log and can be easily retrieved:
    log = load_log("experiment_dir/")
    log.meta.config_dict
    
    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Aug 18, 2021)

Owner
Robert Lange
Deep Something @ TU Berlin ๐Ÿ•ต๏ธ
Robert Lange
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zajฤ…c 57 Oct 23, 2020
Client - ๐Ÿ”ฅ A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

ๆ—ท่ง†ๅคฉๅ…ƒ MegEngine 371 Dec 21, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
ๅ†ณ็ญ–ๆ ‘ๅˆ†็ฑปไธŽๅ›žๅฝ’ๆจกๅž‹็š„ๅฎž็Žฐๅ’Œๅฏ่ง†ๅŒ–

DecisionTree ๅ†ณ็ญ–ๆ ‘ๅˆ†็ฑปไธŽๅ›žๅฝ’ๆจกๅž‹๏ผŒไปฅๅŠๅฏ่ง†ๅŒ– DecisionTree ID3 C4.5 CART ๅˆ†็ฑป ๅ›žๅฝ’ ๅ†ณ็ญ–ๆ ‘็ป˜ๅˆถ ๅˆ†็ฑปๆ ‘ ๅ›žๅฝ’ๆ ‘ ่ฐƒๅ‚ ๅ‰ชๆž ID3 ID3ๅ†ณ็ญ–ๆ ‘ๆ˜ฏๆœ€ๆœด็ด ็š„ๅ†ณ็ญ–ๆ ‘ๅˆ†็ฑปๅ™จ๏ผš ๆ— ๅ‰ชๆž ๅชๆ”ฏๆŒ็ฆปๆ•ฃๅฑžๆ€ง ้‡‡็”จไฟกๆฏๅขž็›Šๅ‡†ๅˆ™ ๅœจdata.pyไธญ๏ผŒๆˆ‘ไปฌ่ฎฐๅฝ•ไบ†ไธ€ไธชๅฐ็š„่ฅฟ็“œๆ•ฐๆฎ

Welt Xing 10 Oct 22, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022