[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Overview

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

This is the repo to host the dataset TextSeg and code for TexRNet from the following paper:

Xingqian Xu, Zhifei Zhang, Zhaowen Wang, Brian Price, Zhonghao Wang and Humphrey Shi, Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach, ArXiv Link

Note:

[2021.04.21] So far, our dataset is partially released with images and semantic labels. Since many people may request the dataset for OCR or non-segmentation tasks, please stay tuned, and we will release the dataset in full ASAP.

[2021.06.18] Our dataset is now fully released. To download the data, please send a request email to [email protected] and tell us which school you are affiliated with. Please be aware the released dataset is version 2, and the annotations are slightly different from the one in the paper. In order to provide the most accurate dataset, we went through a second round of quality assurance, in which we fixed some faulty annotations and made them more consistent across the dataset. Since our TexRNet in the paper doesn't use OCR and character instance labels (i.e. word- and character-level bounding polygons; character-level masks;), we will not release the older version of these labels. However, we release the retroactive semantic_label_v1.tar.gz for researchers to reproduce the results in the paper. For more details about the dataset, please see below.

Introduction

Text in the real world is extremely diverse, yet current text dataset does not reflect such diversity very well. To bridge this gap, we proposed TextSeg, a large-scale fine-annotated and multi-purpose text dataset, collecting scene and design text with six types of annotations: word- and character-wise bounding polygons, masks and transcriptions. We also introduce Text Refinement Network (TexRNet), a novel text segmentation approach that adapts to the unique properties of text, e.g. non-convex boundary, diverse texture, etc., which often impose burdens on traditional segmentation models. TexRNet refines results from common segmentation approach via key features pooling and attention, so that wrong-activated text regions can be adjusted. We also introduce trimap and discriminator losses that show significant improvement on text segmentation.

TextSeg Dataset

Image Collection

Annotation

Download

Our dataset (TextSeg) is academia-only and cannot be used on any commercial project and research. To download the data, please send a request email to [email protected] and tell us which school you are affiliated with.

A full download should contain these files:

  • image.tar.gz contains 4024 images.
  • annotation.tar.gz labels corresponding to the images. These three types of files are included:
    • [dataID]_anno.json contains all word- and character-level translations and bounding polygons.
    • [dataID]_mask.png contains all character masks. Character mask label value will be ordered from 1 to n. Label value 0 means background, 255 means ignore.
    • [dataID]_maskeff.png contains all character masks with effect.
    • Adobe_Research_License_TextSeg.txt license file.
  • semantic_label.tar.gz contains all word-level (semantic-level) masks. It contains:
    • [dataID]_maskfg.png 0 means background, 100 means word, 200 means word-effect, 255 means ignore. (The [dataID]_maskfg.png can also be generated using [dataID]_mask.png and [dataID]_maskeff.png)
  • split.json the official split of train, val and test.
  • [Optional] semantic_label_v1.tar.gz the old version of label that was used in our paper. One can download it to reproduce our paper results.

TexRNet Structure and Results

In this table, we report the performance of our TexRNet on 5 text segmentation dataset including ours.

TextSeg(Ours) ICDAR13 FST COCO_TS MLT_S Total-Text
Method fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score
DeeplabV3+ 84.07 0.914 69.27 0.802 72.07 0.641 84.63 0.837 74.44 0.824
HRNetV2-W48 85.03 0.914 70.98 0.822 68.93 0.629 83.26 0.836 75.29 0.825
HRNetV2-W48 + OCR 85.98 0.918 72.45 0.830 69.54 0.627 83.49 0.838 76.23 0.832
Ours: TexRNet + DeeplabV3+ 86.06 0.921 72.16 0.835 73.98 0.722 86.31 0.830 76.53 0.844
Ours: TexRNet + HRNetV2-W48 86.84 0.924 73.38 0.850 72.39 0.720 86.09 0.865 78.47 0.848

To run the code

Set up the environment

conda create -n texrnet python=3.7
conda activate texrnet
pip install -r requirement.txt

To eval

First, make the following directories to hold pre-trained models, dataset, and running logs:

mkdir ./pretrained
mkdir ./data
mkdir ./log

Second, download the models from this link. Move those downloaded models to ./pretrained.

Thrid, make sure that ./data contains the data. A sample root directory for TextSeg would be ./data/TextSeg.

Lastly, evaluate the model and compute fgIoU/F-score with the following command:

python main.py --eval --pth [model path] [--hrnet] [--gpu 0 1 ...] --dsname [dataset name]

Here is the sample command to eval a TexRNet_HRNet on TextSeg with 4 GPUs:

python main.py --eval --pth pretrained/texrnet_hrnet.pth --hrnet --gpu 0 1 2 3 --dsname textseg

The program will store results and execution log in ./log/eval.

To train

Similarly, these directories need to be created:

mkdir ./pretrained
mkdir ./pretrained/init
mkdir ./data
mkdir ./log

Second, we use multiple pre-trained models for training. Download these initial models from this link. Move those models to ./pretrained/init. Also, make sure that ./data contains the data.

Lastly, execute the training code with the following command:

python main.py [--hrnet] [--gpu 0 1 ...] --dsname [dataset name] [--trainwithcls]

Here is the sample command to train a TexRNet_HRNet on TextSeg with classifier and discriminate loss using 4 GPUs:

python main.py --hrnet --gpu 0 1 2 3 --dsname textseg --trainwithcls

The training configs, logs, and models will be stored in ./log/texrnet_[dsname]/[exid]_[signature].

Bibtex

@article{xu2020rethinking,
  title={Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach},
  author={Xu, Xingqian and Zhang, Zhifei and Wang, Zhaowen and Price, Brian and Wang, Zhonghao and Shi, Humphrey},
  journal={arXiv preprint arXiv:2011.14021},
  year={2020}
}

Acknowledgements

The directory .\hrnet_code is directly copied from the HRNet official github website (link). HRNet code ownership should be credited to HRNet authors, and users should follow their terms of usage.

Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022