[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Overview

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

This is the repo to host the dataset TextSeg and code for TexRNet from the following paper:

Xingqian Xu, Zhifei Zhang, Zhaowen Wang, Brian Price, Zhonghao Wang and Humphrey Shi, Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach, ArXiv Link

Note:

[2021.04.21] So far, our dataset is partially released with images and semantic labels. Since many people may request the dataset for OCR or non-segmentation tasks, please stay tuned, and we will release the dataset in full ASAP.

[2021.06.18] Our dataset is now fully released. To download the data, please send a request email to [email protected] and tell us which school you are affiliated with. Please be aware the released dataset is version 2, and the annotations are slightly different from the one in the paper. In order to provide the most accurate dataset, we went through a second round of quality assurance, in which we fixed some faulty annotations and made them more consistent across the dataset. Since our TexRNet in the paper doesn't use OCR and character instance labels (i.e. word- and character-level bounding polygons; character-level masks;), we will not release the older version of these labels. However, we release the retroactive semantic_label_v1.tar.gz for researchers to reproduce the results in the paper. For more details about the dataset, please see below.

Introduction

Text in the real world is extremely diverse, yet current text dataset does not reflect such diversity very well. To bridge this gap, we proposed TextSeg, a large-scale fine-annotated and multi-purpose text dataset, collecting scene and design text with six types of annotations: word- and character-wise bounding polygons, masks and transcriptions. We also introduce Text Refinement Network (TexRNet), a novel text segmentation approach that adapts to the unique properties of text, e.g. non-convex boundary, diverse texture, etc., which often impose burdens on traditional segmentation models. TexRNet refines results from common segmentation approach via key features pooling and attention, so that wrong-activated text regions can be adjusted. We also introduce trimap and discriminator losses that show significant improvement on text segmentation.

TextSeg Dataset

Image Collection

Annotation

Download

Our dataset (TextSeg) is academia-only and cannot be used on any commercial project and research. To download the data, please send a request email to [email protected] and tell us which school you are affiliated with.

A full download should contain these files:

  • image.tar.gz contains 4024 images.
  • annotation.tar.gz labels corresponding to the images. These three types of files are included:
    • [dataID]_anno.json contains all word- and character-level translations and bounding polygons.
    • [dataID]_mask.png contains all character masks. Character mask label value will be ordered from 1 to n. Label value 0 means background, 255 means ignore.
    • [dataID]_maskeff.png contains all character masks with effect.
    • Adobe_Research_License_TextSeg.txt license file.
  • semantic_label.tar.gz contains all word-level (semantic-level) masks. It contains:
    • [dataID]_maskfg.png 0 means background, 100 means word, 200 means word-effect, 255 means ignore. (The [dataID]_maskfg.png can also be generated using [dataID]_mask.png and [dataID]_maskeff.png)
  • split.json the official split of train, val and test.
  • [Optional] semantic_label_v1.tar.gz the old version of label that was used in our paper. One can download it to reproduce our paper results.

TexRNet Structure and Results

In this table, we report the performance of our TexRNet on 5 text segmentation dataset including ours.

TextSeg(Ours) ICDAR13 FST COCO_TS MLT_S Total-Text
Method fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score
DeeplabV3+ 84.07 0.914 69.27 0.802 72.07 0.641 84.63 0.837 74.44 0.824
HRNetV2-W48 85.03 0.914 70.98 0.822 68.93 0.629 83.26 0.836 75.29 0.825
HRNetV2-W48 + OCR 85.98 0.918 72.45 0.830 69.54 0.627 83.49 0.838 76.23 0.832
Ours: TexRNet + DeeplabV3+ 86.06 0.921 72.16 0.835 73.98 0.722 86.31 0.830 76.53 0.844
Ours: TexRNet + HRNetV2-W48 86.84 0.924 73.38 0.850 72.39 0.720 86.09 0.865 78.47 0.848

To run the code

Set up the environment

conda create -n texrnet python=3.7
conda activate texrnet
pip install -r requirement.txt

To eval

First, make the following directories to hold pre-trained models, dataset, and running logs:

mkdir ./pretrained
mkdir ./data
mkdir ./log

Second, download the models from this link. Move those downloaded models to ./pretrained.

Thrid, make sure that ./data contains the data. A sample root directory for TextSeg would be ./data/TextSeg.

Lastly, evaluate the model and compute fgIoU/F-score with the following command:

python main.py --eval --pth [model path] [--hrnet] [--gpu 0 1 ...] --dsname [dataset name]

Here is the sample command to eval a TexRNet_HRNet on TextSeg with 4 GPUs:

python main.py --eval --pth pretrained/texrnet_hrnet.pth --hrnet --gpu 0 1 2 3 --dsname textseg

The program will store results and execution log in ./log/eval.

To train

Similarly, these directories need to be created:

mkdir ./pretrained
mkdir ./pretrained/init
mkdir ./data
mkdir ./log

Second, we use multiple pre-trained models for training. Download these initial models from this link. Move those models to ./pretrained/init. Also, make sure that ./data contains the data.

Lastly, execute the training code with the following command:

python main.py [--hrnet] [--gpu 0 1 ...] --dsname [dataset name] [--trainwithcls]

Here is the sample command to train a TexRNet_HRNet on TextSeg with classifier and discriminate loss using 4 GPUs:

python main.py --hrnet --gpu 0 1 2 3 --dsname textseg --trainwithcls

The training configs, logs, and models will be stored in ./log/texrnet_[dsname]/[exid]_[signature].

Bibtex

@article{xu2020rethinking,
  title={Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach},
  author={Xu, Xingqian and Zhang, Zhifei and Wang, Zhaowen and Price, Brian and Wang, Zhonghao and Shi, Humphrey},
  journal={arXiv preprint arXiv:2011.14021},
  year={2020}
}

Acknowledgements

The directory .\hrnet_code is directly copied from the HRNet official github website (link). HRNet code ownership should be credited to HRNet authors, and users should follow their terms of usage.

Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023