Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Overview

Interactive Machine Comprehension with Dynamic Knowledge Graphs


Implementation for the EMNLP 2021 paper.

Dependencies

apt-get -y update
apt-get install -y unzip zip parallel
conda create -p /tmp/imrc python=3.6 numpy scipy cython nltk
conda activate /tmp/imrc
pip install --upgrade pip
pip install numpy==1.16.2
pip install gym==0.15.4
pip install tqdm pipreqs pyyaml pytz visdom
conda install pytorch torchvision cudatoolkit=9.2 -c pytorch
pip install transformers
pip install allennlp

Data Preparation

Split SQuAD 1.1 and preprocess

The original SQuAD dataset does not provide its test set, we take 23 wiki articles from its training set as our validation set. We then use the SQuAD dev set as our test set.

# download SQuAD from official website, then
python utils/split_original_squad.py

To speed up training, we parse (tokenization and SRL) the dataset in advance.

python utils/preproc_squad.py

This will result squad_split/processed_squad.1.1.split.[train/valid/test].json, which are used in iMRC tasks.

Preprocess Wikipedia data for self-supervised learning

python utils/get_wiki_filter_squad.py
python utils/split_wiki_data.py

This will result wiki_without_squad/wiki_without_squad_[train/valid/test].json, which are used to pre-train the continuous belief graph generator.

Training

To train the agent equipped with different types of graphs, run:

# without graph
python main.py configs/imrc_none.yaml

# co-occurrence graph
python main.py configs/imrc_cooccur.yaml

# relative position graph
python main.py configs/imrc_rel_pos.yaml

# SRL graph
python main.py configs/imrc_srl.yaml

# continuous belief graph
# in this setting, we need a pre-trained graph generator.
# we provide our pre-trained graph generator at
# https://drive.google.com/drive/folders/1zZ7C_-xaYsfg2Ms7_BO5n3Qzx69UqMKD?usp=sharing

# one can choose to train their own version by:
python pretrain_observation_infomax.py configs/pretrain_cont_bnelief.yaml
# then using the downloaded/saved model checkpoint
python main.py configs/imrc_cont_belief.yaml

To change the task settings/configurations:

general:
  naozi_capacity: 1  # capacity of agent's external memory queue (1, 3, 5)
  generate_or_point: "point"  # "qmpoint": q+o_t, "point": q, "generate": vocab
  disable_prev_next: False  # False: Easy Mode, True: Hard Mode

model:
  recurrent: True  # recurrent component described in Section 3.3 and Section 4.Additional Results

Citation

@inproceedings{Yuan2021imrc_graph,
  title={Interactive Machine Comprehension with Dynamic Knowledge Graphs},
  author={Xingdi Yuan},
  year={2021},
  booktitle="EMNLP",
}
Owner
Xingdi (Eric) Yuan
Senior Research Engineer at Microsoft Research, Montréal
Xingdi (Eric) Yuan
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022