Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Overview

Interactive Machine Comprehension with Dynamic Knowledge Graphs


Implementation for the EMNLP 2021 paper.

Dependencies

apt-get -y update
apt-get install -y unzip zip parallel
conda create -p /tmp/imrc python=3.6 numpy scipy cython nltk
conda activate /tmp/imrc
pip install --upgrade pip
pip install numpy==1.16.2
pip install gym==0.15.4
pip install tqdm pipreqs pyyaml pytz visdom
conda install pytorch torchvision cudatoolkit=9.2 -c pytorch
pip install transformers
pip install allennlp

Data Preparation

Split SQuAD 1.1 and preprocess

The original SQuAD dataset does not provide its test set, we take 23 wiki articles from its training set as our validation set. We then use the SQuAD dev set as our test set.

# download SQuAD from official website, then
python utils/split_original_squad.py

To speed up training, we parse (tokenization and SRL) the dataset in advance.

python utils/preproc_squad.py

This will result squad_split/processed_squad.1.1.split.[train/valid/test].json, which are used in iMRC tasks.

Preprocess Wikipedia data for self-supervised learning

python utils/get_wiki_filter_squad.py
python utils/split_wiki_data.py

This will result wiki_without_squad/wiki_without_squad_[train/valid/test].json, which are used to pre-train the continuous belief graph generator.

Training

To train the agent equipped with different types of graphs, run:

# without graph
python main.py configs/imrc_none.yaml

# co-occurrence graph
python main.py configs/imrc_cooccur.yaml

# relative position graph
python main.py configs/imrc_rel_pos.yaml

# SRL graph
python main.py configs/imrc_srl.yaml

# continuous belief graph
# in this setting, we need a pre-trained graph generator.
# we provide our pre-trained graph generator at
# https://drive.google.com/drive/folders/1zZ7C_-xaYsfg2Ms7_BO5n3Qzx69UqMKD?usp=sharing

# one can choose to train their own version by:
python pretrain_observation_infomax.py configs/pretrain_cont_bnelief.yaml
# then using the downloaded/saved model checkpoint
python main.py configs/imrc_cont_belief.yaml

To change the task settings/configurations:

general:
  naozi_capacity: 1  # capacity of agent's external memory queue (1, 3, 5)
  generate_or_point: "point"  # "qmpoint": q+o_t, "point": q, "generate": vocab
  disable_prev_next: False  # False: Easy Mode, True: Hard Mode

model:
  recurrent: True  # recurrent component described in Section 3.3 and Section 4.Additional Results

Citation

@inproceedings{Yuan2021imrc_graph,
  title={Interactive Machine Comprehension with Dynamic Knowledge Graphs},
  author={Xingdi Yuan},
  year={2021},
  booktitle="EMNLP",
}
Owner
Xingdi (Eric) Yuan
Senior Research Engineer at Microsoft Research, Montréal
Xingdi (Eric) Yuan
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022