Sample and Computation Redistribution for Efficient Face Detection

Overview

Introduction

SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv.

prcurve

Performance

Precision, flops and infer time are all evaluated on VGA resolution.

ResNet family

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
DSFD (CVPR19) ResNet152 94.29 91.47 71.39 120.06 259.55 55.6
RetinaFace (CVPR20) ResNet50 94.92 91.90 64.17 29.50 37.59 21.7
HAMBox (CVPR20) ResNet50 95.27 93.76 76.75 30.24 43.28 25.9
TinaFace (Arxiv20) ResNet50 95.61 94.25 81.43 37.98 172.95 38.9
- - - - - - - -
ResNet-34GF ResNet50 95.64 94.22 84.02 24.81 34.16 11.8
SCRFD-34GF Bottleneck Res 96.06 94.92 85.29 9.80 34.13 11.7
ResNet-10GF ResNet34x0.5 94.69 92.90 80.42 6.85 10.18 6.3
SCRFD-10GF Basic Res 95.16 93.87 83.05 3.86 9.98 4.9
ResNet-2.5GF ResNet34x0.25 93.21 91.11 74.47 1.62 2.57 5.4
SCRFD-2.5GF Basic Res 93.78 92.16 77.87 0.67 2.53 4.2

Mobile family

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
RetinaFace (CVPR20) MobileNet0.25 87.78 81.16 47.32 0.44 0.802 7.9
FaceBoxes (IJCB17) - 76.17 57.17 24.18 1.01 0.275 2.5
- - - - - - - -
MobileNet-0.5GF MobileNetx0.25 90.38 87.05 66.68 0.37 0.507 3.7
SCRFD-0.5GF Depth-wise Conv 90.57 88.12 68.51 0.57 0.508 3.6

X64 CPU Performance of SCRFD-0.5GF:

Test-Input-Size CPU Single-Thread Easy Medium Hard
Original-Size(scale1.0) - 90.91 89.49 82.03
640x480 28.3ms 90.57 88.12 68.51
320x240 11.4ms - - -

precision and infer time are evaluated on AMD Ryzen 9 3950X, using the simple PyTorch CPU inference by setting OMP_NUM_THREADS=1 (no mkldnn).

Installation

Please refer to mmdetection for installation.

  1. Install mmcv. (mmcv-full==1.2.6 and 1.3.3 was tested)
  2. Install build requirements and then install mmdet.
    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
    

Pretrained-Models

Name Easy Medium Hard FLOPs Params(M) Infer(ms) Link
SCRFD_500M 90.57 88.12 68.51 500M 0.57 3.6 download
SCRFD_1G 92.38 90.57 74.80 1G 0.64 4.1 download
SCRFD_2.5G 93.78 92.16 77.87 2.5G 0.67 4.2 download
SCRFD_10G 95.16 93.87 83.05 10G 3.86 4.9 download
SCRFD_34G 96.06 94.92 85.29 34G 9.80 11.7 download
SCRFD_500M_KPS 90.97 88.44 69.49 500M 0.57 3.6 download
SCRFD_2.5G_KPS 93.80 92.02 77.13 2.5G 0.82 4.3 download
SCRFD_10G_KPS 95.40 94.01 82.80 10G 4.23 5.0 download

mAP, FLOPs and inference latency are all evaluated on VGA resolution. _KPS means the model includes 5 keypoints prediction.

Convert to ONNX

Please refer to tools/scrfd2onnx.py

Generated onnx model can accept dynamic input as default.

You can also set specific input shape by pass --shape 640 640, then output onnx model can be optimized by onnx-simplifier.

Inference

Put your input images or videos in ./input directory. The output will be saved in ./output directory. In root directory of project, run the following command for image:

python inference_image.py --input "./input/test.jpg"

and for video:

python inference_video.py --input "./input/obama.mp4"

Use -sh for show results during code running or not

Note that you can pass some other arguments. Take a look at inference_video.py file.

Owner
Sajjad Aemmi
AI MSc Student at Ferdowsi University of Mashhad - Teacher - Machine Learning Engineer - WebDeveloper - Graphist
Sajjad Aemmi
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022