Sample and Computation Redistribution for Efficient Face Detection

Overview

Introduction

SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv.

prcurve

Performance

Precision, flops and infer time are all evaluated on VGA resolution.

ResNet family

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
DSFD (CVPR19) ResNet152 94.29 91.47 71.39 120.06 259.55 55.6
RetinaFace (CVPR20) ResNet50 94.92 91.90 64.17 29.50 37.59 21.7
HAMBox (CVPR20) ResNet50 95.27 93.76 76.75 30.24 43.28 25.9
TinaFace (Arxiv20) ResNet50 95.61 94.25 81.43 37.98 172.95 38.9
- - - - - - - -
ResNet-34GF ResNet50 95.64 94.22 84.02 24.81 34.16 11.8
SCRFD-34GF Bottleneck Res 96.06 94.92 85.29 9.80 34.13 11.7
ResNet-10GF ResNet34x0.5 94.69 92.90 80.42 6.85 10.18 6.3
SCRFD-10GF Basic Res 95.16 93.87 83.05 3.86 9.98 4.9
ResNet-2.5GF ResNet34x0.25 93.21 91.11 74.47 1.62 2.57 5.4
SCRFD-2.5GF Basic Res 93.78 92.16 77.87 0.67 2.53 4.2

Mobile family

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
RetinaFace (CVPR20) MobileNet0.25 87.78 81.16 47.32 0.44 0.802 7.9
FaceBoxes (IJCB17) - 76.17 57.17 24.18 1.01 0.275 2.5
- - - - - - - -
MobileNet-0.5GF MobileNetx0.25 90.38 87.05 66.68 0.37 0.507 3.7
SCRFD-0.5GF Depth-wise Conv 90.57 88.12 68.51 0.57 0.508 3.6

X64 CPU Performance of SCRFD-0.5GF:

Test-Input-Size CPU Single-Thread Easy Medium Hard
Original-Size(scale1.0) - 90.91 89.49 82.03
640x480 28.3ms 90.57 88.12 68.51
320x240 11.4ms - - -

precision and infer time are evaluated on AMD Ryzen 9 3950X, using the simple PyTorch CPU inference by setting OMP_NUM_THREADS=1 (no mkldnn).

Installation

Please refer to mmdetection for installation.

  1. Install mmcv. (mmcv-full==1.2.6 and 1.3.3 was tested)
  2. Install build requirements and then install mmdet.
    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
    

Pretrained-Models

Name Easy Medium Hard FLOPs Params(M) Infer(ms) Link
SCRFD_500M 90.57 88.12 68.51 500M 0.57 3.6 download
SCRFD_1G 92.38 90.57 74.80 1G 0.64 4.1 download
SCRFD_2.5G 93.78 92.16 77.87 2.5G 0.67 4.2 download
SCRFD_10G 95.16 93.87 83.05 10G 3.86 4.9 download
SCRFD_34G 96.06 94.92 85.29 34G 9.80 11.7 download
SCRFD_500M_KPS 90.97 88.44 69.49 500M 0.57 3.6 download
SCRFD_2.5G_KPS 93.80 92.02 77.13 2.5G 0.82 4.3 download
SCRFD_10G_KPS 95.40 94.01 82.80 10G 4.23 5.0 download

mAP, FLOPs and inference latency are all evaluated on VGA resolution. _KPS means the model includes 5 keypoints prediction.

Convert to ONNX

Please refer to tools/scrfd2onnx.py

Generated onnx model can accept dynamic input as default.

You can also set specific input shape by pass --shape 640 640, then output onnx model can be optimized by onnx-simplifier.

Inference

Put your input images or videos in ./input directory. The output will be saved in ./output directory. In root directory of project, run the following command for image:

python inference_image.py --input "./input/test.jpg"

and for video:

python inference_video.py --input "./input/obama.mp4"

Use -sh for show results during code running or not

Note that you can pass some other arguments. Take a look at inference_video.py file.

Owner
Sajjad Aemmi
AI MSc Student at Ferdowsi University of Mashhad - Teacher - Machine Learning Engineer - WebDeveloper - Graphist
Sajjad Aemmi
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022