Sample and Computation Redistribution for Efficient Face Detection

Overview

Introduction

SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv.

prcurve

Performance

Precision, flops and infer time are all evaluated on VGA resolution.

ResNet family

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
DSFD (CVPR19) ResNet152 94.29 91.47 71.39 120.06 259.55 55.6
RetinaFace (CVPR20) ResNet50 94.92 91.90 64.17 29.50 37.59 21.7
HAMBox (CVPR20) ResNet50 95.27 93.76 76.75 30.24 43.28 25.9
TinaFace (Arxiv20) ResNet50 95.61 94.25 81.43 37.98 172.95 38.9
- - - - - - - -
ResNet-34GF ResNet50 95.64 94.22 84.02 24.81 34.16 11.8
SCRFD-34GF Bottleneck Res 96.06 94.92 85.29 9.80 34.13 11.7
ResNet-10GF ResNet34x0.5 94.69 92.90 80.42 6.85 10.18 6.3
SCRFD-10GF Basic Res 95.16 93.87 83.05 3.86 9.98 4.9
ResNet-2.5GF ResNet34x0.25 93.21 91.11 74.47 1.62 2.57 5.4
SCRFD-2.5GF Basic Res 93.78 92.16 77.87 0.67 2.53 4.2

Mobile family

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
RetinaFace (CVPR20) MobileNet0.25 87.78 81.16 47.32 0.44 0.802 7.9
FaceBoxes (IJCB17) - 76.17 57.17 24.18 1.01 0.275 2.5
- - - - - - - -
MobileNet-0.5GF MobileNetx0.25 90.38 87.05 66.68 0.37 0.507 3.7
SCRFD-0.5GF Depth-wise Conv 90.57 88.12 68.51 0.57 0.508 3.6

X64 CPU Performance of SCRFD-0.5GF:

Test-Input-Size CPU Single-Thread Easy Medium Hard
Original-Size(scale1.0) - 90.91 89.49 82.03
640x480 28.3ms 90.57 88.12 68.51
320x240 11.4ms - - -

precision and infer time are evaluated on AMD Ryzen 9 3950X, using the simple PyTorch CPU inference by setting OMP_NUM_THREADS=1 (no mkldnn).

Installation

Please refer to mmdetection for installation.

  1. Install mmcv. (mmcv-full==1.2.6 and 1.3.3 was tested)
  2. Install build requirements and then install mmdet.
    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
    

Pretrained-Models

Name Easy Medium Hard FLOPs Params(M) Infer(ms) Link
SCRFD_500M 90.57 88.12 68.51 500M 0.57 3.6 download
SCRFD_1G 92.38 90.57 74.80 1G 0.64 4.1 download
SCRFD_2.5G 93.78 92.16 77.87 2.5G 0.67 4.2 download
SCRFD_10G 95.16 93.87 83.05 10G 3.86 4.9 download
SCRFD_34G 96.06 94.92 85.29 34G 9.80 11.7 download
SCRFD_500M_KPS 90.97 88.44 69.49 500M 0.57 3.6 download
SCRFD_2.5G_KPS 93.80 92.02 77.13 2.5G 0.82 4.3 download
SCRFD_10G_KPS 95.40 94.01 82.80 10G 4.23 5.0 download

mAP, FLOPs and inference latency are all evaluated on VGA resolution. _KPS means the model includes 5 keypoints prediction.

Convert to ONNX

Please refer to tools/scrfd2onnx.py

Generated onnx model can accept dynamic input as default.

You can also set specific input shape by pass --shape 640 640, then output onnx model can be optimized by onnx-simplifier.

Inference

Put your input images or videos in ./input directory. The output will be saved in ./output directory. In root directory of project, run the following command for image:

python inference_image.py --input "./input/test.jpg"

and for video:

python inference_video.py --input "./input/obama.mp4"

Use -sh for show results during code running or not

Note that you can pass some other arguments. Take a look at inference_video.py file.

Owner
Sajjad Aemmi
AI MSc Student at Ferdowsi University of Mashhad - Teacher - Machine Learning Engineer - WebDeveloper - Graphist
Sajjad Aemmi
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022