Progressive Growing of GANs for Improved Quality, Stability, and Variation

Overview

Progressive Growing of GANs for Improved Quality, Stability, and Variation
— Official TensorFlow implementation of the ICLR 2018 paper

Tero Karras (NVIDIA), Timo Aila (NVIDIA), Samuli Laine (NVIDIA), Jaakko Lehtinen (NVIDIA and Aalto University)

Representative image
Picture: Two imaginary celebrities that were dreamed up by a random number generator.

Abstract:
We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CelebA images at 10242. We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CelebA dataset.

★★★ NEW: StyleGAN2-ADA-PyTorch is now available; see the full list of versions here ★★★

Resources

All the material, including source code, is made freely available for non-commercial use under the Creative Commons CC BY-NC 4.0 license. Feel free to use any of the material in your own work, as long as you give us appropriate credit by mentioning the title and author list of our paper.

Versions

There are two different versions of the source code. The TensorFlow version is newer and more polished, and we generally recommend it as a starting point if you are looking to experiment with our technique, build upon it, or apply it to novel datasets. The original Theano version, on the other hand, is what we used to produce all the results shown in our paper. We recommend using it if — and only if — you are looking to reproduce our exact results for benchmark datasets like CIFAR-10, MNIST-RGB, and CelebA.

The main differences are summarized in the following table:

Feature TensorFlow version Original Theano version
Branch master (this branch) original-theano-version
Multi-GPU support Yes No
FP16 mixed-precision support Yes No
Performance High Low
Training time for CelebA-HQ 2 days (8 GPUs)
2 weeks (1 GPU)
1–2 months
Repro CelebA-HQ results Yes – very close Yes – identical
Repro LSUN results Yes – very close Yes – identical
Repro CIFAR-10 results No Yes – identical
Repro MNIST mode recovery No Yes – identical
Repro ablation study (Table 1) No Yes – identical
Dataset format TFRecords HDF5
Backwards compatibility Can import networks
trained with Theano
N/A
Code quality Reasonable Somewhat messy

System requirements

  • Both Linux and Windows are supported, but we strongly recommend Linux for performance and compatibility reasons.
  • 64-bit Python 3.6 installation with numpy 1.13.3 or newer. We recommend Anaconda3.
  • One or more high-end NVIDIA Pascal or Volta GPUs with 16GB of DRAM. We recommend NVIDIA DGX-1 with 8 Tesla V100 GPUs.
  • NVIDIA driver 391.25 or newer, CUDA toolkit 9.0 or newer, cuDNN 7.1.2 or newer.
  • Additional Python packages listed in requirements-pip.txt

Importing and using pre-trained networks

All pre-trained networks found on Google Drive, as well as ones produced by the training script, are stored as Python PKL files. They can be imported using the standard pickle mechanism as long as two conditions are met: (1) The directory containing the Progressive GAN code repository must be included in the PYTHONPATH environment variable, and (2) a tf.Session() object must have been created beforehand and set as default. Each PKL file contains 3 instances of tfutil.Network:

# Import official CelebA-HQ networks.
with open('karras2018iclr-celebahq-1024x1024.pkl', 'rb') as file:
    G, D, Gs = pickle.load(file)
    # G = Instantaneous snapshot of the generator, mainly useful for resuming a previous training run.
    # D = Instantaneous snapshot of the discriminator, mainly useful for resuming a previous training run.
    # Gs = Long-term average of the generator, yielding higher-quality results than the instantaneous snapshot.

It is also possible to import networks that were produced using the Theano implementation, as long as they do not employ any features that are not natively supported by the TensorFlow version (minibatch discrimination, batch normalization, etc.). To enable Theano network import, however, you must use misc.load_pkl() in place of pickle.load():

# Import Theano versions of the official CelebA-HQ networks.
import misc
G, D, Gs = misc.load_pkl('200-celebahq-1024x1024/network-final.pkl')

Once you have imported the networks, you can call Gs.run() to produce a set of images for given latent vectors, or Gs.get_output_for() to include the generator network in a larger TensorFlow expression. For further details, please consult the example script found on Google Drive. Instructions:

  1. Pull the Progressive GAN code repository and add it to your PYTHONPATH environment variable.
  2. Install the required Python packages with pip install -r requirements-pip.txt
  3. Download import_example.py from networks/tensorflow-version/example_import_script
  4. Download karras2018iclr-celebahq-1024x1024.pkl from networks/tensorflow-version and place it in the same directory as the script.
  5. Run the script with python import_example.py
  6. If everything goes well, the script should generate 10 PNG images (img0.pngimg9.png) that match the ones found in networks/tensorflow-version/example_import_script exactly.

Preparing datasets for training

The Progressive GAN code repository contains a command-line tool for recreating bit-exact replicas of the datasets that we used in the paper. The tool also provides various utilities for operating on the datasets:

usage: dataset_tool.py [-h] <command> ...

    display             Display images in dataset.
    extract             Extract images from dataset.
    compare             Compare two datasets.
    create_mnist        Create dataset for MNIST.
    create_mnistrgb     Create dataset for MNIST-RGB.
    create_cifar10      Create dataset for CIFAR-10.
    create_cifar100     Create dataset for CIFAR-100.
    create_svhn         Create dataset for SVHN.
    create_lsun         Create dataset for single LSUN category.
    create_celeba       Create dataset for CelebA.
    create_celebahq     Create dataset for CelebA-HQ.
    create_from_images  Create dataset from a directory full of images.
    create_from_hdf5    Create dataset from legacy HDF5 archive.

Type "dataset_tool.py <command> -h" for more information.

The datasets are represented by directories containing the same image data in several resolutions to enable efficient streaming. There is a separate *.tfrecords file for each resolution, and if the dataset contains labels, they are stored in a separate file as well:

> python dataset_tool.py create_cifar10 datasets/cifar10 ~/downloads/cifar10
> ls -la datasets/cifar10
drwxr-xr-x  2 user user         7 Feb 21 10:07 .
drwxrwxr-x 10 user user        62 Apr  3 15:10 ..
-rw-r--r--  1 user user   4900000 Feb 19 13:17 cifar10-r02.tfrecords
-rw-r--r--  1 user user  12350000 Feb 19 13:17 cifar10-r03.tfrecords
-rw-r--r--  1 user user  41150000 Feb 19 13:17 cifar10-r04.tfrecords
-rw-r--r--  1 user user 156350000 Feb 19 13:17 cifar10-r05.tfrecords
-rw-r--r--  1 user user   2000080 Feb 19 13:17 cifar10-rxx.labels

The create_* commands take the standard version of a given dataset as input and produce the corresponding *.tfrecords files as output. Additionally, the create_celebahq command requires a set of data files representing deltas with respect to the original CelebA dataset. These deltas (27.6GB) can be downloaded from datasets/celeba-hq-deltas.

Note about module versions: Some of the dataset commands require specific versions of Python modules and system libraries (e.g. pillow, libjpeg), and they will give an error if the versions do not match. Please heed the error messages — there is no way to get the commands to work other than installing these specific versions.

Training networks

Once the necessary datasets are set up, you can proceed to train your own networks. The general procedure is as follows:

  1. Edit config.py to specify the dataset and training configuration by uncommenting/editing specific lines.
  2. Run the training script with python train.py.
  3. The results are written into a newly created subdirectory under config.result_dir
  4. Wait several days (or weeks) for the training to converge, and analyze the results.

By default, config.py is configured to train a 1024x1024 network for CelebA-HQ using a single-GPU. This is expected to take about two weeks even on the highest-end NVIDIA GPUs. The key to enabling faster training is to employ multiple GPUs and/or go for a lower-resolution dataset. To this end, config.py contains several examples for commonly used datasets, as well as a set of "configuration presets" for multi-GPU training. All of the presets are expected to yield roughly the same image quality for CelebA-HQ, but their total training time can vary considerably:

  • preset-v1-1gpu: Original config that was used to produce the CelebA-HQ and LSUN results shown in the paper. Expected to take about 1 month on NVIDIA Tesla V100.
  • preset-v2-1gpu: Optimized config that converges considerably faster than the original one. Expected to take about 2 weeks on 1xV100.
  • preset-v2-2gpus: Optimized config for 2 GPUs. Takes about 1 week on 2xV100.
  • preset-v2-4gpus: Optimized config for 4 GPUs. Takes about 3 days on 4xV100.
  • preset-v2-8gpus: Optimized config for 8 GPUs. Takes about 2 days on 8xV100.

For reference, the expected output of each configuration preset for CelebA-HQ can be found in networks/tensorflow-version/example_training_runs

Other noteworthy config options:

  • fp16: Enable FP16 mixed-precision training to reduce the training times even further. The actual speedup is heavily dependent on GPU architecture and cuDNN version, and it can be expected to increase considerably in the future.
  • BENCHMARK: Quickly iterate through the resolutions to measure the raw training performance.
  • BENCHMARK0: Same as BENCHMARK, but only use the highest resolution.
  • syn1024rgb: Synthetic 1024x1024 dataset consisting of just black images. Useful for benchmarking.
  • VERBOSE: Save image and network snapshots very frequently to facilitate debugging.
  • GRAPH and HIST: Include additional data in the TensorBoard report.

Analyzing results

Training results can be analyzed in several ways:

  • Manual inspection: The training script saves a snapshot of randomly generated images at regular intervals in fakes*.png and reports the overall progress in log.txt.
  • TensorBoard: The training script also exports various running statistics in a *.tfevents file that can be visualized in TensorBoard with tensorboard --logdir <result_subdir>.
  • Generating images and videos: At the end of config.py, there are several pre-defined configs to launch utility scripts (generate_*). For example:
    • Suppose you have an ongoing training run titled 010-pgan-celebahq-preset-v1-1gpu-fp32, and you want to generate a video of random interpolations for the latest snapshot.
    • Uncomment the generate_interpolation_video line in config.py, replace run_id=10, and run python train.py
    • The script will automatically locate the latest network snapshot and create a new result directory containing a single MP4 file.
  • Quality metrics: Similar to the previous example, config.py also contains pre-defined configs to compute various quality metrics (Sliced Wasserstein distance, Fréchet inception distance, etc.) for an existing training run. The metrics are computed for each network snapshot in succession and stored in metric-*.txt in the original result directory.
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023