Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

Related tags

Deep LearningM3D-VTON
Overview

M3D-VTON: A Monocular-to-3D Virtual Try-On Network

Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

Paper | Supplementary | MPV3D Dataset | Pretrained Models

M3D-VTON

Requirements

python >= 3.8.0, pytorch == 1.6.0, torchvision == 0.7.0

Data Processing

After downloading the MPV3D Dataset, please run the following script to preprocess the data:

python util/data_preprocessing.py --MPV3D_root path/to/MPV3D/dataset

Running Inference

We provide demo inputs under the mpv3d_example folder, where the target clothing and the reference person are like:

Demo inputs

with inputs from the mpv3d_example folder, the easiest way to get start is to use the pretrained models and sequentially run the four steps below:

1. Testing MTM Module

python test.py --model MTM --name MTM --dataroot mpv3d_example --datalist test_pairs --results_dir results

2. Testing DRM Module

python test.py --model DRM --name DRM --dataroot mpv3d_example --datalist test_pairs --results_dir results

3. Testing TFM Module

python test.py --model TFM --name TFM --dataroot mpv3d_example --datalist test_pairs --results_dir results

4. Getting colored point cloud and Remeshing

(Note: since the back-side person images are unavailable, in rgbd2pcd.py we provide a fast face inpainting function that produces the mirrored back-side image after a fashion. One may need manually inpaint other back-side texture areas to achieve better visual quality.)

python rgbd2pcd.py

Now you should get the point cloud file prepared for remeshing under results/aligned/pcd/test_pairs/*.ply. MeshLab can be used to remesh the predicted point cloud, with two simple steps below:

  • Normal Estimation: Open MeshLab and load the point cloud file, and then go to Filters --> Normals, Curvatures and Orientation --> Compute normals for point sets

  • Possion Remeshing: Go to Filters --> Remeshing, Simplification and Reconstruction --> Surface Reconstruction: Screen Possion (set reconstruction depth = 9)

Now the final 3D try-on result should be obtained:

Try-on Result

Training on MPV3D Dataset

With the pre-processed MPV3D dataset, you can train the model from scratch by folllowing the three steps below:

1. Train MTM module

python train.py --model MTM --name MTM --dataroot path/to/MPV3D/data --datalist train_pairs --checkpoints_dir path/for/saving/model

then run the command below to obtain the --warproot (here refers to the --results_dir) which is necessary for the other two modules:

python test.py --model MTM --name MTM --dataroot path/to/MPV3D/data --datalist train_pairs --checkpoints_dir path/to/saved/MTMmodel --results_dir path/for/saving/MTM/results

2. Train DRM module

python train.py --model DRM --name DRM --dataroot path/to/MPV3D/data --warproot path/to/MTM/warp/cloth --datalist train_pairs --checkpoints_dir path/for/saving/model

3. Train TFM module

python train.py --model TFM --name TFM --dataroot path/to/MPV3D/data --warproot path/to/MTM/warp/cloth --datalist train_pairs --checkpoints_dir path/for/saving/model

(See options/base_options.py and options/train_options.py for more training options.)

License

The use of this code and the MPV3D dataset is RESTRICTED to non-commercial research and educational purposes.

Citation

If our code is helpful to your research, please cite:

@article{Zhao2021M3DVTONAM,
  title={M3D-VTON: A Monocular-to-3D Virtual Try-On Network},
  author={Fuwei Zhao and Zhenyu Xie and Michael C. Kampffmeyer and Haoye Dong and Songfang Han and Tianxiang Zheng and Tao Zhang and Xiaodan Liang},
  journal={ArXiv},
  year={2021},
  volume={abs/2108.05126}
}
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022