Editing a Conditional Radiance Field

Related tags

Deep Learningeditnerf
Overview

Editing Conditional Radiance Fields

Project | Paper | Video | Demo

Editing Conditional Radiance Fields
Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu, Bryan Russell
MIT, Adobe Research, CMU
in arXiv:2105.06466, 2021.

Editing Results

Color Editing


Our method propagates sparse 2D user scribbles to fill an object region, rendering the edit consistently across views. The user provides a color, a foreground scribble for the region to change, and a background scribble for regions to keep unchanged. To conduct the edit, we optimize a reconstruction-based loss to encourage the model to change the color at the foreground scribble, but maintain the color on the background scribbles.

Shape Editing


Our method propagates 2D user edits to remove or add an object part, propagating the 2D edit consistently across views. For shape removal, the user scribbles over a region of the object to remove. To conduct the removal, we optimize both a reconstruction loss and a density-based loss, encouraging the model to remove density at the scribbled regions. For shape addition, the user selects an object part to paste into the instance. To conduct the addition, we optimize a reconstruction loss similar to the one used for color editing.

Color and Shape Transfer


Our method can transfer shape and color between object instances simply by swapping the color and shape codes between instances.

Editing a Real Image


Our method is able to render novel views of the real object instance and conduct color and shape editing on the instance.

Method


To propagate sparse 2D user scribbles to novel views, we learn a rich prior of plausible-looking objects by training a single radiance field over several object instances. Our architecture builds on NeRF in two ways. First, we introduce shape and color codes for each instance, allowing a single radiance field to represent multiple object instances. Second, we introduce an instance independent shape branch, which learns a generic representation of the object category. Due to our modular architecture design, only a few components of our network need to be modified during editing to effectively execute the user edit.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/stevliu/editnerf.git
cd editnerf
  • Install the dependencies
bash scripts/setup_env.sh
  • Obtain pre-trained models and editing examples:
bash scripts/setup_models.sh
  • Optionally, download the relevant datasets. This step is required to evaluate edits and for training/testing a conditional radiance field:
bash scripts/setup_data.sh

Our code is tested on using Python 3.6, PyTorch 1.3.1, and CUDA 10.1.

Editing a Conditional Radiance Field

To conduct your own edits, please check out our demo. Alternatively, you can run the demo locally using jupyter notebook and using the notebook ui/editing.ipynb.

To execute the edits used in our paper, please run:

bash scripts/editing_experiments.sh

To evaluate the edits used in our paper, please run:

bash scripts/evaluate_edits.sh

Feel free to check out additional editing examples, which can be run via scripts/additional_edits.sh.

Learning a Conditional Radiance Field

Training

To train a conditional radiance field on the PhotoShapes dataset, please run:

python run_nerf.py --config configs/photoshapes/config.txt --skip_loading

The --skip_loading flag tells the script not to load the pretrained weights during training.

To train on other datasets, or use a different model architecture, you can replace the config file with your own. Feel free to check out example config files under configs/. For additional training options, please visit inputs.py.

Evaluation

To render train and test views from a conditional radiance field, you can run:

python test_nerf.py --config config-file --render_test --render_train

where config-file is the same config file used during training.

Then, to run evaluation metrics on the rendered samples, you can run:

python utils/evaluate_reconstruction.py --expdir path-to-log-dir

To evaluate the conditional radiance fields used in our paper, please run:

bash scripts/reconstruction_experiments.sh

Training and Editing Your Own Models

To train a model on a different dataset, first setup the directory to store the dataset. The structure should be

data/
    datasetname/
        instances.txt
        instance_name1
            images
            transforms_train.json
            transforms_val.json
            trainsforms_test.json
        instance_name2
            ...
        ...

Each instance subdirectory should contain transforms_train.json, transforms_test.json, and transforms_val.json. Each of these .json files should contain the camera focal, as well as the camera extrinsics for each image. Please refer to data/photoshapes/shape09135_rank02/transforms_train.json for an example. instances.txt should contain a list of the instance names.

Then you can run python run_nerf.py --config config-file to train a conditional radiance field, and evaluate it using the instructions in the above section.

To edit the conditional radiance field, first make a directory in ui which will contain all the relevant data for the model. Then, copy over the config file, model weights, camera intrinsics, and camera extrinsics (last three are automatically saved under logs/). The directory structure should be

ui/
    datasetname/
        model.tar
        hwfs.npy
        poses.npy
        config.txt

Please refer to ui/photoshapes for an example.

Editing a Real Image

To edit a real image, we first decide on a base model to finetune to the real image. In our experiments, we use the Dosovitskiy chairs model. Then, visually estimate the pose of the image. One way to do this is by finding the nearest neighbor pose in the training set of the base model. Then, construct the dataset folder containing the .json files mentioned in the above section.

The directory structure should be

realchairname/
    images
    transforms_train.json
    transforms_val.json
    trainsforms_test.json

As an example, please refer to data/real_chairs/shape00001_charlton.

To finetune the radiance field on this image, you can run

python run_nerf.py --config base-config --real_image_dir data-dir --savedir savedir --n_iters_code_only 1000 --style_optimizer lbfgs

where base-config is the model to fit, data_dir is the directory containing the real images, and savedir is where you want to save the results. The last two flags tell the training script to first finetune the shape and color codes using LBFGS. Please refer to scripts/reconstruction_experiments.sh for an example.

To edit this instance, copy the finetuned model weights from savedir and to a subdirectory of the base model in ui. Then, copy over the camera intrinsics and camera extrinsics (located under logs/). The directory structure should be

ui/
    basemodel/
        realchair/
            model.tar
            hwfs.npy
            poses.npy

Please refer to ui/dosovitskiy_chairs/real_chair for an example.

Acknowledgments

This codebase is heavily based on the nerf-pytorch code base, and our user interface is heavily based on the GAN rewriting interface. We also use LBFGS code from PyTorch-LBFGS and job scheduling code from the GAN seeing codebase.

We thank all authors for the wonderful code!

Citation

If you use this code for your research, please cite the following work.

@misc{liu2021editing,
      title={Editing Conditional Radiance Fields},
      author={Steven Liu and Xiuming Zhang and Zhoutong Zhang and Richard Zhang and Jun-Yan Zhu and Bryan Russell},
      year={2021},
      eprint={2105.06466},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022