[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Related tags

Deep LearningOkMugle
Overview

Ok Mugle! 🎵

장르부터 멜로디까지, Content-based Music Recommendation

발표 ppt(1차)_1

Description 📖

  • 본 프로젝트에서는 Kakao Arena에서 제공하는 Melon Playlist Continuation 데이터를 활용하여, 사용자가 검색한 노래와 유사한 노래 추천을 구현하였습니다.

발표 ppt(1차)_8

  1. [Model] '유사성'의 기준을 멜로디, 분위기, 상황, 장르 등으로 정의
    • 해당 요소 반영하여 Music2Vec, Time Convolutional AutoEncoder, ConsineEmbeddingLoss Multimodal 등의 모델 Building
  2. [Retrieval] Embedding의 Cosine Similarity를 구하여 Retrieval 구성
  3. [Ranking] 다양한 Ranking Method 사용 → 추천 결과 Ensemble
  4. [Serving] 최종적으로 Score Total Top 10 Ranking Method의 추천 결과 활용하여 Web 구현 & 모델 Serving

Usage ✔️

  • Windows Shell에 아래 명령을 입력하여 실행합니다.
set FLASK_APP=server
set FLASK_ENV=development
flask run

Result (Web) 💻

웹 메인

  • 검색창에 '비투비 - 비밀 (Insane) (Acoustic Ver.)'를 검색한 결과 화면

웹 검색결과

Presentation 🙋

컨퍼런스 발표영상과 보고서입니다. 자세한 분석 내용은 아래 링크를 통해 확인해주세요!

  • GoogleDrive Badge
  • Youtube Badge

Contributor 🧑‍🤝‍🧑

기수 이름
15기 이성범
16기 김권호
16기 박한나
16기 이승주
16기 이예림
16기 주지훈
7기 이광록(멘토)

File Directory 📂

Ok Mugle!
├── 1. preprocessig
│   ├── make_song_meta_and_playlist.ipynb       # 노래, 플레이리스트 데이터 전처리
│   ├── make_mel_data.ipynb                     # 멜 데이터 전처리
│   └── make_mel_batch_data.ipynb               # 멜 데이터 배치 단위로 전처리
│
├── 2. model
│   ├── genre_embedding_model.ipynb             # Music2Vec
│   ├── mel_embedding_model.ipynb               # Time Convolutional Autoencoder
│   └── genre_and_mel_embedding_model.ipynb     # CosineEmbeddingLoss Multimodal
│
├── 3. embedding-visualization
│   └── embedding_visualization_tsne.ipynb      # t-SNE를 활용한 각 임베딩별 시각화
│
├── 4. ranking
│   ├── make_ranking_data_preprocessig.ipynb    # 각 임베딩별 코사인 유사도 Top50 데이터 셋 제작 
│   ├── make_ranking_data_multiprocessig.py     # make_ranking_data_preprocessig의 multiprocessig을 위한 함수
│   ├── make_ranking_data.ipynb                 # 순위별 가중치 ranking, 각 임베딩 별 상위 Top3 ranking
│   └── cos_sim_music_serving.ipynb             # 각 임베딩, ranking 별 결과
│
└── 5. web
    ├── crawling                                # 결과창 구현을 위한 데이터 수집
    │   └── melon_crawling.py 
    │ 
    ├── data                                    # 웹 제작에 활용된 데이터
    │    ├── ranking_song_id2playlist.json
    │    ├── song_id2artist_name_basket.json
    │    ├── song_id2song_name.json
    │    └── song_name_artist_name2song_id.json
    │ 
    ├── static                                  # 웹 제작에 활용된 css, font, image, js
    │    ├── css
    │    ├── fonts
    │    ├── images
    │    └── js
    │ 
    ├── templates                               # 프론트 구현
    │    ├── about.html
    │    ├── index.html
    │    ├── people.html
    │    └── result.html
    │ 
    └── server.py                               # 백엔드 구현
    │
    └── requirements.txt                        # 필요 패키지 목록
      
Owner
SeongBeomLEE
안녕하세요.👋 같이에 가치를 아는 머신러닝 엔지니어 이성범 입니다!
SeongBeomLEE
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023