Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Overview

Learning Intents behind Interactions with Knowledge Graph for Recommendation

This is our PyTorch implementation for the paper:

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He and Tat-Seng Chua (2021). Learning Intents behind Interactions with Knowledge Graph for Recommendation. Paper in arXiv. In WWW'2021, Ljubljana, Slovenia, April 19-23, 2021.

Author: Dr. Xiang Wang (xiangwang at u.nus.edu) and Mr. Tinglin Huang (tinglin.huang at zju.edu.cn)

Introduction

Knowledge Graph-based Intent Network (KGIN) is a recommendation framework, which consists of three components: (1)user Intent modeling, (2)relational path-aware aggregation, (3)indepedence modeling.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{KGIN2020,
  author    = {Xiang Wang and
              Tinglin Huang and 
              Dingxian Wang and
              Yancheng Yuan and
              Zhenguang Liu and
              Xiangnan He and
              Tat{-}Seng Chua},
  title     = {Learning Intents behind Interactions with Knowledge Graph for Recommendation},
  booktitle = {{WWW}},
  year      = {2021}
}

Environment Requirement

The code has been tested running under Python 3.6.5. The required packages are as follows:

  • pytorch == 1.5.0
  • numpy == 1.15.4
  • scipy == 1.1.0
  • sklearn == 0.20.0
  • torch_scatter == 2.0.5
  • networkx == 2.5

Reproducibility & Example to Run the Codes

To demonstrate the reproducibility of the best performance reported in our paper and faciliate researchers to track whether the model status is consistent with ours, we provide the best parameter settings (might be different for the custormized datasets) in the scripts, and provide the log for our trainings.

The instruction of commands has been clearly stated in the codes (see the parser function in utils/parser.py).

  • Last-fm dataset
python main.py --dataset last-fm --dim 64 --lr 0.0001 --sim_regularity 0.0001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3
  • Amazon-book dataset
python main.py --dataset amazon-book --dim 64 --lr 0.0001 --sim_regularity 0.00001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3
  • Alibaba-iFashion dataset
python main.py --dataset alibaba-fashion --dim 64 --lr 0.0001 --sim_regularity 0.0001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3

Important argument:

  • sim_regularity
    • It indicates the weight to control the independence loss.
    • 1e-4(by default), which uses 0.0001 to control the strengths of correlation.

Dataset

We provide three processed datasets: Amazon-book, Last-FM, and Alibaba-iFashion.

  • You can find the full version of recommendation datasets via Amazon-book, Last-FM, and Alibaba-iFashion.
  • We follow KB4Rec to preprocess Amazon-book and Last-FM datasets, mapping items into Freebase entities via title matching if there is a mapping available.
Amazon-book Last-FM Alibaba-ifashion
User-Item Interaction #Users 70,679 23,566 114,737
#Items 24,915 48,123 30,040
#Interactions 847,733 3,034,796 1,781,093
Knowledge Graph #Entities 88,572 58,266 59,156
#Relations 39 9 51
#Triplets 2,557,746 464,567 279,155
  • train.txt
    • Train file.
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
  • test.txt
    • Test file (positive instances).
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
    • Note that here we treat all unobserved interactions as the negative instances when reporting performance.
  • user_list.txt
    • User file.
    • Each line is a triplet (org_id, remap_id) for one user, where org_id and remap_id represent the ID of such user in the original and our datasets, respectively.
  • item_list.txt
    • Item file.
    • Each line is a triplet (org_id, remap_id, freebase_id) for one item, where org_id, remap_id, and freebase_id represent the ID of such item in the original, our datasets, and freebase, respectively.
  • entity_list.txt
    • Entity file.
    • Each line is a triplet (freebase_id, remap_id) for one entity in knowledge graph, where freebase_id and remap_id represent the ID of such entity in freebase and our datasets, respectively.
  • relation_list.txt
    • Relation file.
    • Each line is a triplet (freebase_id, remap_id) for one relation in knowledge graph, where freebase_id and remap_id represent the ID of such relation in freebase and our datasets, respectively.

Acknowledgement

Any scientific publications that use our datasets should cite the following paper as the reference:

@inproceedings{KGIN2020,
  author    = {Xiang Wang and
              Tinglin Huang and 
              Dingxian Wang and
              Yancheng Yuan and
              Zhenguang Liu and
              Xiangnan He and
              Tat{-}Seng Chua},
  title     = {Learning Intents behind Interactions with Knowledge Graph for Recommendation},
  booktitle = {{WWW}},
  year      = {2021}
}

Nobody guarantees the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions:

  • The user must acknowledge the use of the data set in publications resulting from the use of the data set.
  • The user may not redistribute the data without separate permission.
  • The user may not try to deanonymise the data.
  • The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from us.
Owner
A postgraduate student
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022