Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Overview

Learning Intents behind Interactions with Knowledge Graph for Recommendation

This is our PyTorch implementation for the paper:

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He and Tat-Seng Chua (2021). Learning Intents behind Interactions with Knowledge Graph for Recommendation. Paper in arXiv. In WWW'2021, Ljubljana, Slovenia, April 19-23, 2021.

Author: Dr. Xiang Wang (xiangwang at u.nus.edu) and Mr. Tinglin Huang (tinglin.huang at zju.edu.cn)

Introduction

Knowledge Graph-based Intent Network (KGIN) is a recommendation framework, which consists of three components: (1)user Intent modeling, (2)relational path-aware aggregation, (3)indepedence modeling.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{KGIN2020,
  author    = {Xiang Wang and
              Tinglin Huang and 
              Dingxian Wang and
              Yancheng Yuan and
              Zhenguang Liu and
              Xiangnan He and
              Tat{-}Seng Chua},
  title     = {Learning Intents behind Interactions with Knowledge Graph for Recommendation},
  booktitle = {{WWW}},
  year      = {2021}
}

Environment Requirement

The code has been tested running under Python 3.6.5. The required packages are as follows:

  • pytorch == 1.5.0
  • numpy == 1.15.4
  • scipy == 1.1.0
  • sklearn == 0.20.0
  • torch_scatter == 2.0.5
  • networkx == 2.5

Reproducibility & Example to Run the Codes

To demonstrate the reproducibility of the best performance reported in our paper and faciliate researchers to track whether the model status is consistent with ours, we provide the best parameter settings (might be different for the custormized datasets) in the scripts, and provide the log for our trainings.

The instruction of commands has been clearly stated in the codes (see the parser function in utils/parser.py).

  • Last-fm dataset
python main.py --dataset last-fm --dim 64 --lr 0.0001 --sim_regularity 0.0001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3
  • Amazon-book dataset
python main.py --dataset amazon-book --dim 64 --lr 0.0001 --sim_regularity 0.00001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3
  • Alibaba-iFashion dataset
python main.py --dataset alibaba-fashion --dim 64 --lr 0.0001 --sim_regularity 0.0001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3

Important argument:

  • sim_regularity
    • It indicates the weight to control the independence loss.
    • 1e-4(by default), which uses 0.0001 to control the strengths of correlation.

Dataset

We provide three processed datasets: Amazon-book, Last-FM, and Alibaba-iFashion.

  • You can find the full version of recommendation datasets via Amazon-book, Last-FM, and Alibaba-iFashion.
  • We follow KB4Rec to preprocess Amazon-book and Last-FM datasets, mapping items into Freebase entities via title matching if there is a mapping available.
Amazon-book Last-FM Alibaba-ifashion
User-Item Interaction #Users 70,679 23,566 114,737
#Items 24,915 48,123 30,040
#Interactions 847,733 3,034,796 1,781,093
Knowledge Graph #Entities 88,572 58,266 59,156
#Relations 39 9 51
#Triplets 2,557,746 464,567 279,155
  • train.txt
    • Train file.
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
  • test.txt
    • Test file (positive instances).
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
    • Note that here we treat all unobserved interactions as the negative instances when reporting performance.
  • user_list.txt
    • User file.
    • Each line is a triplet (org_id, remap_id) for one user, where org_id and remap_id represent the ID of such user in the original and our datasets, respectively.
  • item_list.txt
    • Item file.
    • Each line is a triplet (org_id, remap_id, freebase_id) for one item, where org_id, remap_id, and freebase_id represent the ID of such item in the original, our datasets, and freebase, respectively.
  • entity_list.txt
    • Entity file.
    • Each line is a triplet (freebase_id, remap_id) for one entity in knowledge graph, where freebase_id and remap_id represent the ID of such entity in freebase and our datasets, respectively.
  • relation_list.txt
    • Relation file.
    • Each line is a triplet (freebase_id, remap_id) for one relation in knowledge graph, where freebase_id and remap_id represent the ID of such relation in freebase and our datasets, respectively.

Acknowledgement

Any scientific publications that use our datasets should cite the following paper as the reference:

@inproceedings{KGIN2020,
  author    = {Xiang Wang and
              Tinglin Huang and 
              Dingxian Wang and
              Yancheng Yuan and
              Zhenguang Liu and
              Xiangnan He and
              Tat{-}Seng Chua},
  title     = {Learning Intents behind Interactions with Knowledge Graph for Recommendation},
  booktitle = {{WWW}},
  year      = {2021}
}

Nobody guarantees the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions:

  • The user must acknowledge the use of the data set in publications resulting from the use of the data set.
  • The user may not redistribute the data without separate permission.
  • The user may not try to deanonymise the data.
  • The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from us.
Owner
A postgraduate student
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023