Automatically creates genre collections for your Plex media

Overview

Plex Auto Genres

Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre specific content

  1. Requirements
  2. Optimal Setup
  3. Getting Started
  4. Automating
  5. Docker Usage
  6. Troubleshooting
Movies example (with cover art set using --set-posters flag.)

Movie Collections

Anime example

Anime Collections

Requirements

  1. Python 3 - Instructions > Windows / Mac / Linux (Not required if using Docker)
  2. TMDB Api Key (Only required for non-anime libraries)

Optimal Setup

  1. Anime / Anime Movies are in their own library on your plex server. (Anime and Anime Movies can share the same library)
  2. Standard TV Shows are in their own library on your plex server.
  3. Standard Movies are in their own library on your plex server.
  4. Proper titles for your media, this makes it easier to find the media. (see https://support.plex.tv/articles/naming-and-organizing-your-tv-show-files/)

For this to work well your plex library should be sorted. Meaning standard and non-standard media should not be in the same Plex library. Anime is an example of non-standard media.

If your anime shows and standard tv shows are in the same library, you can still use this script just choose (standard) as the type. However, doing this could cause incorrect genres added to some or all of your anime media entries.

Here is an example of my plex library setup

Plex Library Example

Getting Started

  1. Read the Optimal Setup section above
  2. Run python3 -m pip install -r requirements.txt to install the required dependencies.
  3. Rename the .env.example file to .env
  4. Rename the config/config.json.example file to config/config.json. The default settings are probably fine.
  5. Edit the .env file and set your plex username, password, and server name. If you are generating collections for standard media (non anime) you will need to also obtain an TMDB Api Key (for movies and tv shows)
    Variable Authentication method Value
    PLEX_USERNAME Username and password Your Plex Username
    PLEX_PASSWORD Username and password Your Plex Password
    PLEX_SERVER_NAME Username and password Your Plex Server Name
    PLEX_BASE_URL Token Your Plex Server base URL
    PLEX_TOKEN Token Your Plex Token
    PLEX_COLLECTION_PREFIX (Optional) Prefix for the created Plex collections. For example, with a value of "*", a collection named "Adventure", the name would instead be "*Adventure".

    Default value : ""
    TMDB_API_KEY Your TMDB api key (not required for anime library tagging)
  6. Optional, If you want to update the poster art of your collections. See posters/README.md

You are now ready to run the script

usage: plex-auto-genres.py [-h] [--library LIBRARY] [--type {anime,standard-movie,standard-tv}] [--set-posters] [--sort] [--rate-anime]
                           [--create-rating-collections] [--query QUERY [QUERY ...]] [--dry] [--no-progress] [-f] [-y]

Adds genre tags (collections) to your Plex media.

optional arguments:
  -h, --help            show this help message and exit
  --library LIBRARY     The exact name of the Plex library to generate genre collections for.
  --type {anime,standard-movie,standard-tv}
                        The type of media contained in the library
  --set-posters         uploads posters located in posters/<type> of matching collections. Supports (.PNG)
  --sort                sort collections by adding the sort prefix character to the collection sort title
  --rate-anime          update media ratings with MyAnimeList ratings
  --create-rating-collections
                        sorts media into collections based off rating
  --query QUERY [QUERY ...]
                        Looks up genre and match info for the given media title.
  --dry                 Do not modify plex collections (debugging feature)
  --no-progress         Do not display the live updating progress bar
  -f, --force           Force proccess on all media (independently of proggress recorded in logs/).
  -y, --yes

examples: 
python plex-auto-genres.py --library "Anime Movies" --type anime
python plex-auto-genres.py --library "Anime Shows" --type anime
python plex-auto-genres.py --library Movies --type standard-movie
python plex-auto-genres.py --library "TV Shows" --type standard-tv

python plex-auto-genres.py --library Movies --type standard-movie --set-posters
python plex-auto-genres.py --library Movies --type standard-movie --sort
python plex-auto-genres.py --library Movies --type standard-movie --create-rating-collections

python plex-auto-genres.py --type anime --query chihayafuru
python plex-auto-genres.py --type standard-movie --query Thor Ragnarok

Example Usage

Automating

I have conveniently included a script to help with automating the process of running plex-auto-genres when combined with any number of cron scheduling tools such as crontab, windows task scheduler, etc.

If you have experience with Docker I reccommend using my docker image which will run on a schedule.

  1. Copy .env.example to .env and update the values
  2. Copy config.json.example to config.json and update the values
  3. Each entry in the run list will be executed when you run this script
  4. Have some cron/scheduling process execute python3 automate.py, I suggest running it manually first to test that its working.

Note: The first run of this script may take a long time (minutes to hours) depending on your library sizes.

Note: Don't be alarmed if you do not see any text output. The terminal output you normally see when running plex-auto-genres.py is redirected to the log file after each executed run in your config.

Docker Usage

  1. Install Docker
  2. Install Docker Compose
  3. Clone or Download this repository
  4. Edit docker/docker-compose.yml
    1. Update the volumes: paths to point to the config,logs,posters directories in this repo.
    2. Update the environment: variables. See Getting Started.
  5. Copy config/config.json.example to config/config.json
    1. Edit the run array examples to match your needs. When the script runs, each library entry in this array will be updated on your Plex server.
  6. Run docker-compose up -d, the script will run immediately then proceed to run on a schedule every night at 1am UTC. Logs will be located at logs/plex-auto-genres-automate.log

Another Docker option of this tool can be found here.

Troubleshooting

  1. If you are not seeing any new collections close your plex client and re-open it.
  2. Delete the generated plex-*-successful.txt and plex-*-failures.txt files if you want the script to generate collections from the beginning. You may want to do this if you delete your collections and need them re-created.
  3. Having the release year in the title of a tv show or movie can cause the lookup to fail in some instances. For example Battlestar Galactica (2003) will fail, but Battlestar Galactica will not.
Owner
Shane Israel
Shane Israel
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Pytorch Lightning 1.2k Jan 06, 2023
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022