Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Overview

Motionformer

This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this repository, we provide PyTorch code for training and testing our proposed Motionformer model. Motionformer use proposed trajectory attention to achieve state-of-the-art results on several video action recognition benchmarks such as Kinetics-400 and Something-Something V2.

If you find Motionformer useful in your research, please use the following BibTeX entry for citation.

@misc{patrick2021keeping,
      title={Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers}, 
      author={Mandela Patrick and Dylan Campbell and Yuki M. Asano and Ishan Misra Florian Metze and Christoph Feichtenhofer and Andrea Vedaldi and Jo\ão F. Henriques},
      year={2021},
      eprint={2106.05392},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Model Zoo

We provide Motionformer models pretrained on Kinetics-400 (K400), Kinetics-600 (K600), Something-Something-V2 (SSv2), and Epic-Kitchens datasets.

name dataset # of frames spatial crop [email protected] [email protected] url
Joint K400 16 224 79.2 94.2 model
Divided K400 16 224 78.5 93.8 model
Motionformer K400 16 224 79.7 94.2 model
Motionformer-HR K400 16 336 81.1 95.2 model
Motionformer-L K400 32 224 80.2 94.8 model
name dataset # of frames spatial crop [email protected] [email protected] url
Motionformer K600 16 224 81.6 95.6 model
Motionformer-HR K600 16 336 82.7 96.1 model
Motionformer-L K600 32 224 82.2 96.0 model
name dataset # of frames spatial crop [email protected] [email protected] url
Joint SSv2 16 224 64.0 88.4 model
Divided SSv2 16 224 64.2 88.6 model
Motionformer SSv2 16 224 66.5 90.1 model
Motionformer-HR SSv2 16 336 67.1 90.6 model
Motionformer-L SSv2 32 224 68.1 91.2 model
name dataset # of frames spatial crop A acc N acc url
Motionformer EK 16 224 43.1 56.5 model
Motionformer-HR EK 16 336 44.5 58.5 model
Motionformer-L EK 32 224 44.1 57.6 model

Installation

First, create a conda virtual environment and activate it:

conda create -n motionformer python=3.8.5 -y
source activate motionformer

Then, install the following packages:

  • torchvision: pip install torchvision or conda install torchvision -c pytorch
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • simplejson: pip install simplejson
  • einops: pip install einops
  • timm: pip install timm
  • PyAV: conda install av -c conda-forge
  • psutil: pip install psutil
  • scikit-learn: pip install scikit-learn
  • OpenCV: pip install opencv-python
  • tensorboard: pip install tensorboard
  • matplotlib: pip install matplotlib
  • pandas: pip install pandas
  • ffmeg: pip install ffmpeg-python

OR:

simply create conda environment with all packages just from yaml file:

conda env create -f environment.yml

Lastly, build the Motionformer codebase by running:

git clone https://github.com/facebookresearch/Motionformer
cd Motionformer
python setup.py build develop

Usage

Dataset Preparation

Please use the dataset preparation instructions provided in DATASET.md.

Training the Default Motionformer

Training the default Motionformer that uses trajectory attention, and operates on 16-frame clips cropped at 224x224 spatial resolution, can be done using the following command:

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

You may need to pass location of your dataset in the command line by adding DATA.PATH_TO_DATA_DIR path_to_your_dataset, or you can simply modify

DATA:
  PATH_TO_DATA_DIR: path_to_your_dataset

To the yaml configs file, then you do not need to pass it to the command line every time.

Using a Different Number of GPUs

If you want to use a smaller number of GPUs, you need to modify .yaml configuration files in configs/. Specifically, you need to modify the NUM_GPUS, TRAIN.BATCH_SIZE, TEST.BATCH_SIZE, DATA_LOADER.NUM_WORKERS entries in each configuration file. The BATCH_SIZE entry should be the same or higher as the NUM_GPUS entry.

Using Different Self-Attention Schemes

If you want to experiment with different space-time self-attention schemes, e.g., joint space-time attention or divided space-time attention, use the following commands:

python tools/run_net.py \
  --cfg configs/K400/joint_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/K400/divided_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Training Different Motionformer Variants

If you want to train more powerful Motionformer variants, e.g., Motionformer-HR (operating on 16-frame clips sampled at 336x336 spatial resolution), and Motionformer-L (operating on 32-frame clips sampled at 224x224 spatial resolution), use the following commands:

python tools/run_net.py \
  --cfg configs/K400/motionformer_336_16x8.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_32x3.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Note that for these models you will need a set of GPUs with ~32GB of memory.

Inference

Use TRAIN.ENABLE and TEST.ENABLE to control whether training or testing is required for a given run. When testing, you also have to provide the path to the checkpoint model via TEST.CHECKPOINT_FILE_PATH.

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TRAIN.ENABLE False \

Alterantively, you can modify provided SLURM script and run following:

sbatch slurm_scripts/test.sh configs/K400/motionformer_224_16x4.yaml path_to_your_checkpoint

Single-Node Training via Slurm

To train Motionformer via Slurm, please check out our single node Slurm training script slurm_scripts/run_single_node_job.sh.

sbatch slurm_scripts/run_single_node_job.sh configs/K400/motionformer_224_16x4.yaml /your/job/dir/${JOB_NAME}/

Multi-Node Training via Submitit

Distributed training is available via Slurm and submitit

pip install submitit

To train Motionformer model on Kinetics using 8 nodes with 8 gpus each use the following command:

python run_with_submitit.py --cfg configs/K400/motionformer_224_16x4.yaml --job_dir  /your/job/dir/${JOB_NAME}/ --partition $PARTITION --num_shards 8 --use_volta32

We provide a script for launching slurm jobs in slurm_scripts/run_multi_node_job.sh.

sbatch slurm_scripts/run_multi_node_job.sh configs/K400/motionformer_224_16x4.yaml /your/job/dir/${JOB_NAME}/

Please note that hyper-parameters in configs were used with 8 nodes with 8 gpus (32 GB). Please scale batch-size, and learning-rate appropriately for your cluster configuration.

Finetuning

To finetune from an existing PyTorch checkpoint add the following line in the command line, or you can also add it in the YAML config:

TRAIN.CHECKPOINT_EPOCH_RESET: True
TRAIN.CHECKPOINT_FILE_PATH path_to_your_PyTorch_checkpoint

Environment

The code was developed using python 3.8.5 on Ubuntu 20.04. For training, we used eight GPU compute nodes each node containing 8 Tesla V100 GPUs (32 GPUs in total). Other platforms or GPU cards have not been fully tested.

License

The majority of this work is licensed under CC-NC 4.0 International license. However, portions of the project are available under separate license terms: SlowFast and pytorch-image-models are licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests. Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Acknowledgements

Motionformer is built on top of PySlowFast, Timesformer and pytorch-image-models by Ross Wightman. We thank the authors for releasing their code. If you use our model, please consider citing these works as well:

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}
@inproceedings{gberta_2021_ICML,
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    title = {Is Space-Time Attention All You Need for Video Understanding?},
    booktitle   = {Proceedings of the International Conference on Machine Learning (ICML)}, 
    month = {July},
    year = {2021}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
Owner
Facebook Research
Facebook Research
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022