KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

Related tags

Deep LearningKGDet
Overview

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detection".

Architecture

Installation

To avoid problems, please install this repo in a pure conda virtual environment.

First, enter the root directory of this repo. Install CUDA and PyTorch with conda.

conda install -c pytorch -c conda-forge pytorch==1.4.0 torchvision==0.5.0 cudatoolkit-dev=10.1 

Then, install other dependencies with pip.

pip install -r requirements.txt

DeepFashion2API

cd deepfashion2_api/PythonAPI
pip install -e .

main code

Our code is based on mmdetection, which is a clean open-sourced project for benchmarking object detection methods.

cd ../../mmdetection
python setup.py develop

Now the repo is ready, let's go back to the root directory.

cd ..

Data Preparation

DeepFashion2

If you need to run experiments on the entire DeepFashion2 dataset, please refer to DeepFashion2 for detailed guidance. Otherwise, you can skip to the Demo dataset subsection.

After downloading and unpacking the dataset, please create a soft link from the code repository to the dataset's root directory.

ln -s <root dir of DeepFashion2> data/deepfashion2

Demo dataset

We provide a subset (32 images) of DeepFashion2 to enable quick-experiment.

Checkpoints

The checkpoints can be fetched from this OneDrive link.

Experiments

Demo

Test with 1 gpu

./mmdetection/tools/dist_test.sh configs/kgdet_moment_r50_fpn_1x-demo.py checkpoints/KGDet_epoch-12.pth 1 --json_out work_dirs/demo_KGDet.json --eval bbox keypoints
  • Results files will be stored as work_dirs/demo_KGDet.json.
  • If you only need the prediction results, you can drop --eval and its arguments.

DeepFashion2

Train with 4 gpus

./mmdetection/tools/dist_train.sh configs/kgdet_moment_r50_fpn_1x-deepfashion2.py 4 --validate --work_dir work_dirs/TRAIN_KGDet
  • The running log and checkpoints will be stored in the work_dirs/TRAIN_KGDet directory according to the argument --work_dir.
  • --validate evokes a validation section after each training epoch.

Test with 4 gpus

./mmdetection/tools/dist_test.sh configs/kgdet_moment_r50_fpn_1x-deepfashion2.py checkpoints/KGDet_epoch-12.pth 4 --json_out work_dirs/result_KGDet.json --eval bbox keypoints
  • Results files will be stored as work_dirs/result_KGDet.json.

Customization

If you would like to run our model on your own data, you can imitate the structure of the demo_dataset (an image directory plus a JSON file), and adjust the arguments in the configuration file.

Acknowledgment

This repo is built upon RepPoints and mmdetection.

@inproceedings{qian2021kgdet,
  title={KGDet: Keypoint-Guided Fashion Detection},
  author={Qian, Shenhan and Lian, Dongze and Zhao, Binqiang and Liu, Tong and Zhu, Bohui and Li, Hai and Gao, Shenghua},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={3},
  pages={2449--2457},
  year={2021}
}
Owner
Qian Shenhan
Qian Shenhan
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022