Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Overview

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution

visitors

Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte
Computer Vision Lab, ETH Zurich, Switzerland

[Paper] [Code] [Training Code]

Our work is the beginning rather than the end of real image super-resolution.


  • News (2021-08-31): We upload the training code.
  • News (2021-08-24): We upload the BSRGAN degradation model.
from utils import utils_blindsr as blindsr
img_lq, img_hq = blindsr.degradation_bsrgan(img, sf=4, lq_patchsize=72)
  • News (2021-07-23): After rejection by CVPR 2021, our paper is accepted by ICCV 2021. For the sake of fairness, we will not update the trained models in our camera-ready version. However, we may updata the trained models in github.
  • News (2021-05-18): Add trained BSRGAN model for scale factor 2.
  • News (2021-04): Our degradation model for face image enhancement: https://github.com/vvictoryuki/BSRGAN_implementation

Training

  1. Download KAIR: git clone https://github.com/cszn/KAIR.git
  2. Put your training high-quality images into trainsets/trainH or set "dataroot_H": "trainsets/trainH"
  3. Train BSRNet
    1. Modify train_bsrgan_x4_psnr.json e.g., "gpu_ids": [0], "dataloader_batch_size": 4
    2. Training with DataParallel
    python main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json
    1. Training with DistributedDataParallel - 4 GPUs
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json  --dist True
  4. Train BSRGAN
    1. Put BSRNet model (e.g., '400000_G.pth') into superresolution/bsrgan_x4_gan/models
    2. Modify train_bsrgan_x4_gan.json e.g., "gpu_ids": [0], "dataloader_batch_size": 4
    3. Training with DataParallel
    python main_train_gan.py --opt options/train_bsrgan_x4_gan.json
    1. Training with DistributedDataParallel - 4 GPUs
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_gan.py --opt options/train_bsrgan_x4_gan.json  --dist True
  5. Test BSRGAN model 'xxxxxx_E.pth' by modified main_test_bsrgan.py
    1. 'xxxxxx_E.pth' is more stable than 'xxxxxx_G.pth'

Some visual examples: oldphoto2; butterfly; comic; oldphoto3; oldphoto6; comic_01; comic_03; comic_04


Testing code

Main idea

Design a new degradation model to synthesize LR images for training:

  • 1) Make the blur, downsampling and noise more practical
    • Blur: two convolutions with isotropic and anisotropic Gaussian kernels from both the HR space and LR space
    • Downsampling: nearest, bilinear, bicubic, down-up-sampling
    • Noise: Gaussian noise, JPEG compression noise, processed camera sensor noise
  • 2) Degradation shuffle: instead of using the commonly-used blur/downsampling/noise-addition pipeline, we perform randomly shuffled degradations to synthesize LR images

Some notes on the proposed degradation model:

  • The degradation model is mainly designed to synthesize degraded LR images. Its most direct application is to train a deep blind super-resolver with paired LR/HR images. In particular, the degradation model can be performed on a large dataset of HR images to produce unlimited perfectly aligned training images, which typically do not suffer from the limited data issue of laboriously collected paired data and the misalignment issue of unpaired training data.

  • The degradation model tends to be unsuited to model a degraded LR image as it involves too many degradation parameters and also adopts a random shuffle strategy.

  • The degradation model can produce some degradation cases that rarely happen in real-world scenarios, while this can still be expected to improve the generalization ability of the trained deep blind super-resolver.

  • A DNN with large capacity has the ability to handle different degradations via a single model. This has been validated multiple times. For example, DnCNN is able to handle SISR with different scale factors, JPEG compression deblocking with different quality factors and denoising for a wide range of noise levels, while still having a performance comparable to VDSR for SISR. It is worth noting that even when the super-resolver reduces the performance for unrealistic bicubic downsampling, it is still a preferred choice for real SISR.

  • One can conveniently modify the degradation model by changing the degradation parameter settings and adding more reasonable degradation types to improve the practicability for a certain application.

Comparison

These no-reference IQA metrics, i.e., NIQE, NRQM and PI, do not always match perceptual visual quality [1] and the IQA metric should be updated with new SISR methods [2]. We further argue that the IQA metric for SISR should also be updated with new image degradation types, which we leave for future work.

[1] "NTIRE 2020 challenge on real-world image super-resolution: Methods and results." CVPRW, 2020.
[2] "PIPAL: a large-scale image quality assessment dataset for perceptual image restoration." ECCV, 2020.

More visual results on RealSRSet dataset

Left: real images | Right: super-resolved images with scale factor 4

Visual results on DPED dataset

Without using any prior information of DPED dataset for training, our BSRGAN still performs well.

Citation

@inproceedings{zhang2021designing,
  title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
  author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
  booktitle={arxiv},
  year={2021}
}

Acknowledgments

This work was partly supported by the ETH Zurich Fund (OK), a Huawei Technologies Oy (Finland) project, and an Amazon AWS grant.

Owner
Kai Zhang
Image Restoration; Inverse Problems
Kai Zhang
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022