Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Overview

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation

This is a pytorch project for the paper Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation by Xiaogang Xu, Hengshuang Zhao and Jiaya Jia presented at ICCV2021.

paper link, arxiv

Introduction

Adversarial training is promising for improving the robustness of deep neural networks towards adversarial perturbations, especially on the classification task. The effect of this type of training on semantic segmentation, contrarily, just commences. We make the initial attempt to explore the defense strategy on semantic segmentation by formulating a general adversarial training procedure that can perform decently on both adversarial and clean samples. We propose a dynamic divide-and-conquer adversarial training (DDC-AT) strategy to enhance the defense effect, by setting additional branches in the target model during training, and dealing with pixels with diverse properties towards adversarial perturbation. Our dynamical division mechanism divides pixels into multiple branches automatically. Note all these additional branches can be abandoned during inference and thus leave no extra parameter and computation cost. Extensive experiments with various segmentation models are conducted on PASCAL VOC 2012 and Cityscapes datasets, in which DDC-AT yields satisfying performance under both white- and black-box attacks.

Project Setup

For multiprocessing training, we use apex, tested with pytorch 1.0.1.

First install Python 3. We advise you to install Python 3 and PyTorch with Anaconda:

conda create --name py36 python=3.6
source activate py36

Clone the repo and install the complementary requirements:

cd $HOME
git clone --recursive [email protected]:dvlab-research/Robust_Semantic_Segmentation.git
cd Robust_Semantic_Segmentation
pip install -r requirements.txt

The environment of our experiments is CUDA10.2 and TITAN V. And you should install apex for training.

Requirement

  • Hardware: 4-8 GPUs (better with >=11G GPU memory)

Train

  • Download related datasets and you should modify the relevant paths specified in folder "config"
  • Download ImageNet pre-trained models and put them under folder initmodel for weight initialization.

Cityscapes

  • Train the baseline model with no defense on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train.sh
    
  • Train the baseline model with no defense on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train.sh
    
  • Train the model with SAT on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train_sat.sh
    
  • Train the model with SAT on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train_sat.sh
    
  • Train the model with DDCAT on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train_ddcat.sh
    
  • Train the model with DDCAT on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train_ddcat.sh
    

VOC2012

  • Train the baseline model with no defense on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train.sh
    
  • Train the baseline model with no defense on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train.sh
    
  • Train the model with SAT on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train_sat.sh
    
  • Train the model with SAT on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train_sat.sh
    
  • Train the model with DDCAT on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train_ddcat.sh
    
  • Train the model with DDCAT on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train_ddcat.sh
    

You can use the tensorboardX to visualize the training loss, by

tensorboard --logdir=exp/path_to_log

Test

We provide the script for evaluation, reporting the miou on both clean and adversarial samples (the adversarial samples are obtained with attack whose n=2, epsilon=0.03 x 255, alpha=0.01 x 255)

Cityscapes

  • Evaluate the PSPNet trained with no defense on Cityscapes
    sh tool_test/cityscapes/psp_test.sh
    
  • Evaluate the PSPNet trained with SAT on Cityscapes
    sh tool_test/cityscapes/psp_test_sat.sh
    
  • Evaluate the PSPNet trained with DDCAT on Cityscapes
    sh tool_test/cityscapes/psp_test_ddcat.sh
    
  • Evaluate the DeepLabv3 trained with no defense on Cityscapes
    sh tool_test/cityscapes/aspp_test.sh
    
  • Evaluate the DeepLabv3 trained with SAT on Cityscapes
    sh tool_test/cityscapes/aspp_test_sat.sh
    
  • Evaluate the DeepLabv3 trained with DDCAT on Cityscapes
    sh tool_test/cityscapes/aspp_test_ddcat.sh
    

VOC2012

  • Evaluate the PSPNet trained with no defense on VOC2012
    sh tool_test/voc2012/psp_test.sh
    
  • Evaluate the PSPNet trained with SAT on VOC2012
    sh tool_test/voc2012/psp_test_sat.sh
    
  • Evaluate the PSPNet trained with DDCAT on VOC2012
    sh tool_test/voc2012/psp_test_ddcat.sh
    
  • Evaluate the DeepLabv3 trained with no defense on VOC2012
    sh tool_test/voc2012/aspp_test.sh
    
  • Evaluate the DeepLabv3 trained with SAT on VOC2012
    sh tool_test/voc2012/aspp_test_sat.sh
    
  • Evaluate the DeepLabv3 trained with DDCAT on VOC2012
    sh tool_test/voc2012/aspp_test_ddcat.sh
    

Pretrained Model

You can download the pretrained models from https://drive.google.com/file/d/120xLY_pGZlm3tqaLxTLVp99e06muBjJC/view?usp=sharing

Cityscapes with PSPNet

The model trained with no defense: pretrain/cityscapes/pspnet/no_defense
The model trained with SAT: pretrain/cityscapes/pspnet/sat
The model trained with DDCAT: pretrain/cityscapes/pspnet/ddcat

Cityscapes with DeepLabv3

The model trained with no defense: pretrain/cityscapes/deeplabv3/no_defense
The model trained with SAT: pretrain/cityscapes/deeplabv3/sat
The model trained with DDCAT: pretrain/cityscapes/deeplabv3/ddcat

VOC2012 with PSPNet

The model trained with no defense: pretrain/voc2012/pspnet/no_defense
The model trained with SAT: pretrain/voc2012/pspnet/sat
The model trained with DDCAT: pretrain/voc2012/pspnet/ddcat

VOC2012 with DeepLabv3

The model trained with no defense: pretrain/voc2012/deeplabv3/no_defense
The model trained with SAT: pretrain/voc2012/deeplabv3/sat
The model trained with DDCAT: pretrain/voc2012/deeplabv3/ddcat

Citation Information

If you find the project useful, please cite:

@inproceedings{xu2021ddcat,
  title={Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation},
  author={Xiaogang Xu, Hengshuang Zhao and Jiaya Jia},
  booktitle={ICCV},
  year={2021}
}

Acknowledgments

This source code is inspired by semseg.

Contributions

If you have any questions/comments/bug reports, feel free to e-mail the author Xiaogang Xu ([email protected]).

Owner
DV Lab
Deep Vision Lab
DV Lab
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022