Development Kit for the SoccerNet Challenge

Overview

SoccerNetv2-DevKit

Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started working with the soccernet data and the proposed tasks. More information about the dataset can be found on our official website.

SoccerNet-v2 is an extension of SoccerNet-v1 with new and challenging tasks including action spotting, camera shot segmentation with boundary detection, and a novel replay grounding task.

The dataset consists of 500 complete soccer games including:

  • Full untrimmed broadcast videos in both low and high resolution.
  • Pre-computed features such as ResNET-152.
  • Annotations of actions among 17 classes (Labels-v2.json).
  • Annotations of camera replays linked to actions (Labels-cameras.json).
  • Annotations of camera changes and camera types for 200 games (Labels-cameras.json).

Participate in our upcoming Challenge in the CVPR 2021 International Challenge on Activity Recognition Workshop and try to win up to 1000$ sponsored by Second Spectrum! All details can be found on the challenge website, or on the main page.

The participation deadline is fixed at the 30th of May 2021. The official rules and guidelines are available on ChallengeRules.md.

How to download SoccerNet-v2

A SoccerNet pip package to easily download the data and the annotations is available.

To install the pip package simply run:

pip install SoccerNet

Please follow the instructions provided in the Download folder of this repository. Do also mind that signing an Non-Disclosure agreement (NDA) is required to access the LQ and HQ videos: NDA.

How to extract video features

As it was one of the most requested features on SoccerNet-V1, this repository provides functions to automatically extract the ResNet-152 features and compute the PCA on your own broadcast videos. These functions allow you to test pre-trained action spotting, camera segmentation or replay grounding models on your own games.

The functions to extract the video features can be found in the Features folder.

Baseline Implementations

This repository contains several baselines for each task which are presented in the SoccerNet-V2 paper, or subsequent papers. You can use these codes to build upon our methods and improve the performances.

Evaluation

This repository and the pip package provide evaluation functions for the three proposed tasks based on predictions saved in the JSON format. See the Evaluation folder of this repository for more details.

Visualizations

Finally, this repository provides the Annotation tool used to annotate the actions, the camera types and the replays. This tool can be used to visualize the information. Please follow the instruction in the dedicated folder for more details.

Citation

For further information check out the paper and supplementary material: https://arxiv.org/abs/2011.13367

Please cite our work if you use our dataset:

@InProceedings{Deliège2020SoccerNetv2,
      title={SoccerNet-v2 : A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos}, 
      author={Adrien Deliège and Anthony Cioppa and Silvio Giancola and Meisam J. Seikavandi and Jacob V. Dueholm and Kamal Nasrollahi and Bernard Ghanem and Thomas B. Moeslund and Marc Van Droogenbroeck},
      year={2021},
      booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
      month = {June},
}
Owner
Silvio Giancola
Silvio Giancola
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022