[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Related tags

Deep LearningSDGZSL
Overview

Semantics Disentangling for Generalized Zero-shot Learning

This is the official implementation for paper

Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, Jingjing Li, Zheng Zhang.
Semantics Disentangling for Generalized Zero-shot Learning
International Conference on Computer Vision (ICCV) 2021.

Semantics Disentangling for Generalized Zero-shot Learning

Abstract: Generalized zero-shot learning (GZSL) aims to classify samples under the assumption that some classes are not observable during training. To bridge the gap between the seen and unseen classes, most GZSL methods attempt to associate the visual features of seen classes with attributes or to generate unseen samples directly. Nevertheless, the visual features used in the prior approaches do not necessarily encode semantically related information that the shared attributes refer to, which degrades the model generalization to unseen classes. To address this issue, in this paper, we propose a novel semantics disentangling framework for the generalized zero-shot learning task (SDGZSL), where the visual features of unseen classes are firstly estimated by a conditional VAE and then factorized into semantic-consistent and semantic-unrelated latent vectors. In particular, a total correlation penalty is applied to guarantee the independence between the two factorized representations, and the semantic consistency of which is measured by the derived relation network. Extensive experiments conducted on four GZSL benchmark datasets have evidenced that the semantic-consistent features disentangled by the proposed SDGZSL are more generalizable in tasks of canonical and generalized zero-shot learning.

Requirements

The implementation runs on

  • Python 3.6

  • torch 1.3.1

  • Numpy

  • Sklearn

  • Scipy

Usage

Put your datasets in SDGZSL_data folder and run the scripts:

The extracted features for APY and AWA datasets are from [1], FLO and CUB datasets are from [2]. For the fine-tuned features, AWA,FLO and CUB are from [3]. The APY fine-tuned features are extracted from us.

[1] Xian, Yongqin, et al. "Feature generating networks for zero-shot learning." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[2] Yu, Yunlong, et al. "Episode-based prototype generating network for zero-shot learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[3] Narayan, Sanath, et al. "Latent embedding feedback and discriminative features for zero-shot classification." ECCV 2020.

Citation:

If you find this useful, please cite our work as follows:

@inproceedings{chen2021semantics,
	title={Semantics Disentangling for Generalized Zero-shot Learning},
	author={Chen, Zhi and Luo, Yadan and Qiu, Ruihong and Huang, Zi and Li, Jingjing and Zhang, Zheng},
	booktitle={ICCV},
	year={2021}
}
Owner
Zhi Chen (陈智) PhD Student in the University of Queensland.
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022