使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

Overview

extract-video-subtittle

使用深度学习框架提取视频硬字幕;

本地识别无需联网;

CPU识别速度可观;

容器提供API接口;

运行环境

本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包;

提供windows界面操作;

容器为CPU版本;

视频演示

https://www.bilibili.com/video/BV18Q4y1f774/

程序说明

1、先启动后端容器实例

docker run -d -p 6666:6666 m986883511/extract_subtitles

image-20210801214757813

2、启动程序

简单介绍页面

1:点击左边按钮连接第一步启动的容器;

2:视频提取字幕的总进度

3:当前视频帧显示的位置,就是视频进度条

4:识别出来的文字会在这里显示一下

image-20210801215010179

image-20210801215258761

3、点击选择视频确认字幕位置

点击选择视频按钮,这时你可以拖动进度条到有字幕的位置;然后点击选择字幕区域;在视频中画一个矩形;

image-20210801215258761

4、点击测试连接API

image-20210801220206554

后端没问题的话,会显示已连通;此时所有步骤准备就绪

5、开始识别

点击请先完成前几步按钮,内部分为这几个步骤

  1. 本地通过ffmpeg提取视频声音保存到temp目录(0%-10%)
  2. api通信将声音文件发送到容器内,容器内spleeter库提取声音中人声,结果保存在容器内temp目录,很耗时间,吃CPU和内存(10%-30)
  3. api通信,将人声根据停顿分片,返回分片结果,耗较短的时间(30%-40%)
  4. 根据说话分片时间开始识别字幕(40-%100%)

当100%的时候查看temp目录就生成了和视频同名的srt字幕文件

运行后台

后端接口容器地址Docker Hub

此过程可能时间较长,您需要预先安装好好docker,并配置好docker加速器,你可能需要先docker login

docker run -d -p 6666:6666 m986883511/extract_subtitles

本项目缺少文件

因网速墙的问题,大文件推送不上去,可以参考.gitignore中写的

其他

视频提取

# 视频片段提取
ffmpeg -ss 00:15:45 -t 00:02:15 -i test/three_body_3_7.mp4 -vcodec copy -acodec copy test/3body.mp4
# 打包界面程序
C:/Python/Python38-32/Scripts/pyinstaller.exe main.spec

参考资料

本项目中深度学习源代码为/docker/backend

原作者为:https://github.com/YaoFANGUK/video-subtitle-extractor

You might also like...
Comments
  • 提取人声一直没结果

    提取人声一直没结果

    image 视频是40多分钟的连续剧。CPU版本。之前用YaoFANGUK/video-subtitle-extractor提取字幕很成功也准确,但时间比较长。看到作者用音频分析减少了识别的帧数,所以试了一下。但在提取人声时,已经等待了近50分钟没有结果。而且CPU的占用只有1%左右,这明显不正常。用YaoFANGUK/video-subtitle-extractor整个的耗时可能都没有这么久。另外autosub也是提取音频来语音识别字幕,识别人声也很快,同样的视频几分钟就完了。麻烦作者看看是出了什么问题呢。

    opened by royzengyi 2
  • 项目咨询

    项目咨询

    Hello,我尝试了一下这个软件,感觉还是不错的,不过在实际使用中还是会有不少问题。

    我是一个独立开发者,这边愿意付费或者合作来完善一下,让这个项目更具实用性,不知道你有没有兴趣呢?

    没有找到联系方式,只好通过issue来试一下,你可以在看到之后删除,谢谢。

    我的邮箱是yedaxia#foxmail.com

    opened by YeDaxia 1
Releases(0.2.0)
Owner
歌者
失去人性,失去很多;失去兽性,失去一切;活着才能燃烧自己。
歌者
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022