Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Overview

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Introduction

The average lifetime of the $D^{0}$ mesons was computed from 10,000 experimental data of the decay time and the associated error by minimising the negative log-likelihood (NLL) corresponding to cases with and without the background signals. In the absence of possible background signals, the parabolic minimisation method was employed, yielding the average lifetime as $(404.5 +/- 4.7) x 10^-15 seconds with a tolerance level of 10^-6. This result was found to be inconsistent with the literature value provided by the Particle Data Group, showing a deviation of approximately 6 x 10^-15 seconds. By considering possible background signals, an alternative distribution and the corresponding NLL were derived. This was subsequently minimised using the gradient, Newton's and the Quasi-Newton methods, yielding consistent results. The average lifetime and the fraction of the background signals in the sample were estimated to be (409.7 +/- 5.5) x 10^-15 seconds and 0.0163 +/- .0086$, respectively, where the uncertainties were calculated using an error matrix and the correlation coefficient was found to be -0.4813. The literature value lies within the uncertainty, showing a percentage difference of approximately 0.098%. Thus the results verify the presence of the background signals in the data and validate the theory of the expected distribution derived by assuming the background signal as a Gaussian due the limitation of the detector resolution.

Requirements

Python 2.x is required to run the script

Create an environment using conda as follows:

  conda create -n python2 python=2.x

Then activate the new environment by:

  conda activate python2

Results

figure1

Figure 1: Histogram of the measured decay time of D^0 mesons and the expected distribution with various tau and sigma in the units of picoseconds. The figure illustrates that the average lifetime is approximately between 0.4 ps and 0.5 ps, being closer to the former value. The second figure clearly demonstrates that the distribution with tau = 0.4 ps and sigma = 0.2 ps fits the profile of the histogram the most closest.


figure2

Figure 2: Result of the minimisation using the parabolic method on a hyperbolic cosine function. The initial guesses were 2 ps, 3 ps and 5 ps, and the minimum is estimated to be at tau = 2.80 x 10^-11 (3 s.f.) using a tolerance level of 10^-6.


figure3

Figure 3: Graph of the 1-D NLL. The minimisation yielded the minimum as tau_min = 0.4045 ps correct to 4 d.p. with a tolerance level of 10^-6. The minimum was originally estima- ted to be roughly 0.40 ps, which is equal to the result correct to 2 d.p. Moreover, the parabola with a curvature of 22,572 illustrates its suitability in approximating the minimum.


figure4

Figure 4: The dependence of the standard deviation on the number of measurements in logarithmic scales. The minimisation of NLL function took initial guesses of 0.2 ps, 0.3 ps and 0.5 ps. Each figure depicts a linearly decreasing pattern of the standard deviation with the number of measurements in logarithmic scales. Thus a linear fit was applied and it was extrapolated, assuming the pattern stayed linear in the region of interest. The extrapolation yielded the required number of measurements for an accuracy of 10^-15 s as (2.3 to 2.6) x 10^5.


figure5

Figure 5: Contour plots of the 2D hyperbolic cosine function showing the result from the minimisation with an initial condition of (x, y) = (-2.5, 3.0), step-length of alpha = 0.05 and a tolerance level of 10^-6. The left figure is an enlarged version of the right. The minimum estimated using the Quasi-Newton, gradient and Newton's methods are: (x, y) = (-1.92, 1.91) x 10^-5, (x, y) = (-1.86, 1.96) x 10^-5 and (x, y) = (-2.42 x 10^-13, 6.72 x 10^-8} with 213, 222 and 5 iterations, respectively. The results graphically demonstrate the minimisation process with all the methods yielding expected results and thus confirming the validity of the computation. The paths generated by the Quasi-Newton and the gradient methods show only a small difference with similar number of iterations, whereas Newton's method illustrates a greater converging speed.


figure6

Figure 6: Contour plots of the 2D NLL function showing the result from the minimisation with initial condition of (a, tau) = (0.2, 0.4 ps), step-length of alpha = 0.00001 and a tolerance level of 10^-6. The plot of the left is an enlarged version of the plot on the right. The positions of the minimum estimated using the Quasi-Newton, gradient and Newton's methods were identical correct to 4 d.p. The estimated position of the minimum is (a, tau) = (0.9837, 0.4097 ps) with 98 iterations for the first two methods and 6 for the third. The figures show that the paths taken during the minimisation process are almost identical for the Quasi-Newton and the gradient method; the blue curve virtually superimposes the green curve. The path generated by Newton's method, on the other hand, differs and identifies the minimum in relatively small number of iterations. Note: CDS was used to approximate the gradients for this particular result.


figure8

Figure 7: The error ellipse - a contour plot corresponding to one standard deviation change in the parameters above the minimum.

🔗 Links

linkedin

License

MIT License

Owner
Son Gyo Jung
Son Gyo Jung
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022