This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Overview

Hierarchical Motion Understanding via Motion Programs (CVPR 2021)

Paper

This repository contains the official implementation of:

Hierarchical Motion Understanding via Motion Programs

full paper | short talk | long talk | project webpage

Motion Programs example

Running motion2prog

0. We start with video file and first prepare the input data

$ ffmpeg -i ${video_dir}/video.mp4 ${video_dir}/frames/%05d.jpg
$ python AlphaPose/scripts/demo_inference.py \
    --cfg AlphaPose/pretrained_models/256x192_res50_lr1e-3_1x.yaml \
    --checkpoint AlphaPose/pretrained_models/halpe26_fast_res50_256x192.pth \
    --indir ${video_dir}/frames --outdir ${video_dir}/pose_mpii_track \
    --pose_track --showbox --flip --qsize 256
$ mv ${video_dir}/pose_mpii_track/alphapose-results.json \
    ${video_dir}/alphapose-results-halpe26-posetrack.json

We packaged a demo video with necessary inputs for quickly testing our code

$ wget https://sumith1896.github.io/motion2prog/static/demo.zip
$ mv demo.zip data/  && cd data/ && unzip demo.zip && cd ..
  • We need 2D pose detection results & extracted frames of video (for visualization)

  • We support loading from different pose detector formats in the load function in lkeypoints.py.

  • We used AlphaPose with the above commands for all pose detection results.

Run motion program synthesis pipeline

1. With the data prepared, you can run the synthesis with the following command:

$ python fit.py -d data/demo/276_reg -k coco -a -x -c -p 1 -w 20 --no-acc \
--stat-thres 5 --span-thres 5 --cores 9 -r 1600 -o ./visualization/static/data/demo
  • The various options and their descriptions are explained in the fit.py file.

  • The results can be found under ./visualization/static/data/demo.

Visualizing the synthesized programs

2. We package a visualization server for visualizing the generated programs

$ cd visualization/
$ bash deploy.sh p
  • Open the directed the webpage and browse the results interactively.

Citations

If you find our code or paper useful to your research, please consider citing:

@inproceedings{motion2prog2021,
    Author = {Sumith Kulal and Jiayuan Mao and Alex Aiken and Jiajun Wu},
    Title = {Hierarchical Motion Understanding via Motion Programs},
    booktitle={CVPR},
    year={2021},
}

Checklist

Please open a GitHub issue or contact [email protected] for any issues or questions!

  • Upload pre-processed data used in paper.
  • Add for-loop synthesis layer.

Acknowledgements

We thank Karan Chadha, Shivam Garg and Shubham Goel for helpful discussions. This work is in part supported by Magic Grant from the Brown Institute for Media Innovation, the Samsung Global Research Outreach (GRO) Program, Autodesk, Amazon Web Services, and Stanford HAI for AWS Cloud Credits.

Parts of this repo use materials from SCANimate and fit.

Owner
Sumith Kulal
Insanely passionate about Computer Science.
Sumith Kulal
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023