AI drive app that can help user become beautiful.

Overview

爱美丽 Beauty

简体中文

Features

Beauty is an AI drive app that can help user become beautiful.

it contain those functions:

  1. face score cheek

  2. face beauty report

  3. face imporve proposals

  4. face comparison ( pk )

right now, it can only support asian women

and other function is under construction

The latest Android Version download:

https://gitee.com/knifecms/beauty/releases

(there is no web connection data transfer, every function works in mobile locally )

| | | | |---|---|---|

Project Introduce

1.face contour detection

use Dlib

2.face skin detection

byol + lda

3.Overall characteristics

resnet

Sub projects

  1. android beauty app

  2. deep learning face beauty research

  3. asian face leaderboard

    and leaderboard website: http://1mei.fit

Environment

  • Python 3.8

Usage in python

1.clone:

git clone https://gitee.com/knifecms/beauty.git

2.Install depend;

2.1 new install:
conda install cmake
conda install nodejs
conda install dlib
2.2 Import conda env:
conda env create -f face.yaml

3.Modify predict.py image path

# change the detect image path
test = "data/2.jpg"

4.Execute:

python predict.py

you can get beauty score in [0-5], the higher the better

5.Interpretation of results:

execute dir landmarks/ 

    1_gen_feature.py 
    
    2_prepare_data.py 
    
gen features in: data/face/features.csv

then run:

python predict_interpret.py

6.run in cam:

python predict_cam.py

7.run web service:

python predict_server.py

or run:

./restart_server.sh

preview:

http://locahost:5000/pred

we use two tech to explain result: lime and shap(recommend)

face point

face_reoprt

Todo

1.redesign the face report, do not use AI explain framework but combine small face part scores.

2.颜值解释(已添加点位和身体部位对应名称); (使用传统切割手段 和 胶囊图网络Capsule GNN 对比使用 https://github.com/benedekrozemberczki/CapsGNN https://github.com/brjathu/deepcaps )

3.use lbph in android to detect skin type

4.使用带语义结构的特征(识别特定皮肤纹理等)

5.端上应用:

由于cordova摄像头插件无法通过录像的方式捕捉人脸轮廓,暂时弃用
Android Native C++配置过于复杂,windows下与python兼容性不好

DEV:

train data:

https://github.com/HCIILAB/SCUT-FBP5500-Database-Release

Directory description:

App     	移动端项目
dl          深度神经网络训练过程
doc         文档
feature     特征处理
landmarks   人脸关键点提取过程
leaderboard 人脸排行榜
logs        日志目录
model       模型二进制文件
static      flask服务静态文件
template    flask服务模版文件
test        测试目录

ak net

reference

《女性美容美体小百科》

https://wenku.baidu.com/view/b10e711ba58da0116c1749e6.html

https://wenku.baidu.com/view/29392bbb9fc3d5bbfd0a79563c1ec5da50e2d6eb.html

https://max.book118.com/html/2017/1115/140076049.shtm

Other research progress

https://github.com/bknyaz/beauty_vision

https://github.com/ustcqidi/BeautyPredict

http://antitza.com/assessment_female_beauty.pdf

The Beauty of Capturing Faces: Rating the Quality of Digital Portraits https://arxiv.org/abs/1501.07304v1

SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction https://arxiv.org/abs/1801.06345v1

Understanding Beauty via Deep Facial Features: https://arxiv.org/pdf/1902.05380.pdf

Welcome contributions

QQ group: 740807335

wechat:

wechat

Owner
Starved Midnight
Interesting in ML
Starved Midnight
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022