Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

Related tags

Deep LearningVRDP
Overview

VRDP (NeurIPS 2021)

Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language
Mingyu Ding, Zhenfang Chen, Tao Du, Ping Luo, Joshua B. Tenenbaum, and Chuang Gan

image

More details can be found at the Project Page.

If you find our work useful in your research please consider citing our paper:

@inproceedings{ding2021dynamic,
  author = {Ding, Mingyu and Chen, Zhenfang and Du, Tao and Luo, Ping and Tenenbaum, Joshua B and Gan, Chuang},
  title = {Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language},
  booktitle = {Advances In Neural Information Processing Systems},
  year = {2021}
}

Prerequisites

  • Python 3
  • PyTorch 1.3 or higher
  • All relative packages are covered by Miniconda
  • Both CPUs and GPUs are supported

Dataset preparation

  • Download videos, video annotation, questions and answers, and object proposals accordingly from the official website

  • Transform videos into ".png" frames with ffmpeg.

  • Organize the data as shown below.

    clevrer
    ├── annotation_00000-01000
    │   ├── annotation_00000.json
    │   ├── annotation_00001.json
    │   └── ...
    ├── ...
    ├── image_00000-01000
    │   │   ├── 1.png
    │   │   ├── 2.png
    │   │   └── ...
    │   └── ...
    ├── ...
    ├── questions
    │   ├── train.json
    │   ├── validation.json
    │   └── test.json
    ├── proposals
    │   ├── proposal_00000.json
    │   ├── proposal_00001.json
    │   └── ...
    
  • We also provide data for physics learning and program execution in Google Drive. You can download them optionally and put them in the ./data/ folder.

  • Download the processed data executor_data.zip for the executor. Put it in and unzip it to ./executor/data/.

Get Object Dictionaries (Concepts and Trajectories)

Download the object proposals from the region proposal network and follow the Step-by-step Training in DCL to get object concepts and trajectories.

The above process includes:

  • trajectory extraction
  • concept learning
  • trajectory refinement

Or you can download our extracted object dictionaries object_dicts.zip directly from Google Drive.

Learning

1. Differentiable Physics Learning

After we get the above object dictionaries, we learn physical parameters from object properties and trajectories.

cd dynamics/
python3 learn_dynamics.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output object physical parameters object_dicts_with_physics.zip can be downloaded from Google Drive.

2. Physics Simulation (counterfactual)

Physical simulation using learned physical parameters.

cd dynamics/
python3 physics_simulation.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output simulated trajectories/events object_simulated.zip can be downloaded from Google Drive.

3. Physics Simulation (predictive)

Correction of long-range prediction according to video observations.

cd dynamics/
python3 refine_prediction.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output refined trajectories/events object_updated_results.zip can be downloaded from Google Drive.

Evaluation

After we get the final trajectories/events, we perform the neuro-symbolic execution and evaluate the performance on the validation set.

cd executor/
python3 evaluation.py

The test json file for evaluation on evalAI can be generated by

cd executor/
python3 get_results.py

The Generalized Clerver Dataset (counterfactual_mass)

Examples

  • Predictive question image
  • Counterfactual question image

Acknowledgements

For questions regarding VRDP, feel free to post here or directly contact the author ([email protected]).

Owner
Mingyu Ding
Mingyu Ding
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
202 Jan 06, 2023
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
wlad 2 Dec 19, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022