Model Zoo of BDD100K Dataset

Overview

BDD100K Model Zoo

In this repository, we provide popular models for each task in the BDD100K dataset.

teaser

For each task in the BDD100K dataset, we make publicly available the model weights, evaluation results, predictions, visualizations, as well as scripts to performance evaluation and visualization. The goal is to provide a set of competitive baselines to facilitate research and provide a common benchmark for comparison.

The number of pre-trained models in this zoo is 1️⃣ 1️⃣ 5️⃣ . You can include your models in this repo as well! See contribution instructions.

This repository currently supports the tasks listed below. For more information about each task, click on the task name. We plan to support all tasks in the BDD100K dataset eventually; see the roadmap for our plan and progress.

If you have any questions, please go to the BDD100K discussions.

Roadmap

  • Lane marking
  • Panoptic segmentation
  • Pose estimation

Dataset

Please refer to the dataset preparation instructions for how to prepare and use the BDD100K dataset with the models.

Maintainers

Citation

To cite the BDD100K dataset in your paper,

@InProceedings{bdd100k,
    author = {Yu, Fisher and Chen, Haofeng and Wang, Xin and Xian, Wenqi and Chen,
              Yingying and Liu, Fangchen and Madhavan, Vashisht and Darrell, Trevor},
    title = {BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}
Comments
  • Using the models to predict on other Images

    Using the models to predict on other Images

    Hi,

    can i use the models under "bdd100k-models/det/" to make predictions on other images ?

    When i followed the "Usage"-Section, it seems that the models can only be used to evaluate the Test/Val Images.

    opened by askppp 5
  • Drivable Segmentation Model inference stuck

    Drivable Segmentation Model inference stuck

    When I am running Deeplabv3+ model by using: python ./test.py configs/drivable/deeplabv3plus_r50-d8_512x1024_40k_drivable_bdd100k.py --format-only --format-dir output It just stuck in around 1490 step image I have tried several different configs, they all have the same issue.

    opened by danielzhangau 4
  • Generate semantic segmentation output as png

    Generate semantic segmentation output as png

    Hello,

    I'm generating semantic segmentation using the following command.

    python ./test.py ~/config.py --show-dir ~/Documents/bdd100k-models/data/bdd100k/labels/seg_track_20/val --opacity 1
    

    This generates the colormaps for the images, however, the output produced is in .jpg format which results in blur within the labels (as shown below.) How can I update the script so that it generates the labels in png format. My input images are from the MOTS 2020 Images dataset, which are in jpg format.

    image

    opened by digvijayad 2
  • Sem_Seg Inference Error - RuntimeError: DataLoader worker is killed by signal: Segmentation fault.

    Sem_Seg Inference Error - RuntimeError: DataLoader worker is killed by signal: Segmentation fault.

    Error when running Sem_seg model inference Command Run: python ./test.py ./configs/sem_seg/deeplabv3+_r50-d8_512x1024_40k_sem_seg_bdd100k.py --format-only --format-dir ./outputs

    ERROR:

    workers per gpu=2
    /home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/mmseg/models/losses/cross_entropy_loss.py:235: UserWarning: Default ``avg_non_ignore`` is False, if you would like to ignore the certain label and average loss over non-ignore labels, which is the same with PyTorch official cross_entropy, set ``avg_non_ignore=True``.
      warnings.warn(
    load checkpoint from http path: https://dl.cv.ethz.ch/bdd100k/sem_seg/models/deeplabv3+_r50-d8_512x1024_40k_sem_seg_bdd100k.pth
    'CLASSES' not found in meta, use dataset.CLASSES instead
    'PALETTE' not found in meta, use dataset.PALETTE instead
    [                                                  ] 0/1000, elapsed: 0s, ETA:ERROR: Unexpected segmentation fault encountered in worker.
    ERROR: Unexpected segmentation fault encountered in worker.
    ERROR: Unexpected segmentation fault encountered in worker.
    Traceback (most recent call last):
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1011, in _try_get_data
        data = self._data_queue.get(timeout=timeout)
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/queue.py", line 179, in get
        self.not_empty.wait(remaining)
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/threading.py", line 306, in wait
        gotit = waiter.acquire(True, timeout)
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler
        _error_if_any_worker_fails()
    RuntimeError: DataLoader worker (pid 15796) is killed by signal: Segmentation fault. 
    
    The above exception was the direct cause of the following exception:
    
    Traceback (most recent call last):
      File "./test.py", line 174, in <module>
        main()
      File "./test.py", line 150, in main
        outputs = single_gpu_test(
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/mmseg/apis/test.py", line 89, in single_gpu_test
        for batch_indices, data in zip(loader_indices, data_loader):
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 530, in __next__
        data = self._next_data()
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1207, in _next_data
        idx, data = self._get_data()
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1163, in _get_data
        success, data = self._try_get_data()
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1024, in _try_get_data
        raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e
    RuntimeError: DataLoader worker (pid(s) 15796) exited unexpectedly
    
    opened by digvijayad 2
  • red traffic lights

    red traffic lights

    Hello, thanks for your marvelous contribution.I would like to know that the category of red traffic lights is not available on bdd, have you re-labeled it on the bdd dataset?

    opened by liluxing153 1
  • tagging:finetune possibilities

    tagging:finetune possibilities

    hi hi, thanks for your marvelous contribution. I am very impressed. Now I want to apply this pretrain model(tagging road type and weather) on my own dataset, do you have any codebase for finetuning?

    opened by anran1231 1
  • Semantic segmetation ;common settings  MMSegmentation link not working

    Semantic segmetation ;common settings MMSegmentation link not working

    https://github.com/open-mmlab/mmsegmentation/blob/master/docs/model_zoo.md#common-settings The above link is not working

    I would like to know the settings under which the segmentation models are trained , so that i can replicate the results . thank you.

    opened by 100daggers 1
  • Issue in converting the instance segmentation mask encoding from bdd100k to coco

    Issue in converting the instance segmentation mask encoding from bdd100k to coco

    Hello,

    I am trying to convert the bdd100k instance segmentation using this command: python3 -m bdd100k.label.to_coco -m ins_seg --only-mask -i ./bdd100k/labels/ins_seg/bitmasks/val -o ./ins_seg_val_cocofmt_v2.json

    Also, tried this: python3 -m bdd100k.label.to_coco -m ins_seg -i ./bdd100k/labels/ins_seg/polygons/ins_seg_val.json -o ./ins_seg_val_cocofmt_v3.json -mb ./bdd100k/labels/ins_seg/bitmasks/val

    The conversion is successful in both cases and the annotation looks like this

    Screen Shot 2022-01-07 at 11 46 36 AM ** that's not how coco annotations are.

    Now, if you see the segmentation field above there's string encoding of the masks. Now, I am unsure if that's expected or not.

    Further, assuming it's correct, I tried to load the annotations using loader from DETR https://github.com/facebookresearch/detr/blob/091a817eca74b8b97e35e4531c1c39f89fbe38eb/datasets/coco.py#L36

    The line I have mentioned above is supposed to do the conversion but I am getting an error from the pycocotools that it's not expecting a string in the mask. Screen Shot 2022-01-07 at 11 53 51 AM

    So, I am unsure where the problem is? Is the conversion correct to coco then the loader should work? Note: I tried to convert the detections and they worked fine.

    Thank you for any help you can provide.

    opened by sfarkya04 1
  • How to train on my own gpu?

    How to train on my own gpu?

    Hello! thank you for your work~~but i wonder if i could train these models on my own gpu? i wonder if there are som instructions or usages? plz ,thank u!

    opened by StefanYz 1
Releases(v1.1.0)
  • v1.1.0(Dec 2, 2021)

    BDD100K Models 1.1.0 Release

    teaser

    • Highlights
    • New Task: Pose Estimation
    • New Models

    Highlights

    In this release, we provide over 20 pre-trained models for the new pose estimation task in BDD100K, along with evaluation and visualization tools. We also provide over 30 new models for object detection, instance segmentation, semantic segmentation, and drivable area.

    New Task: Pose Estimation

    With the release of 2D human pose estimation data in BDD100K, we provide pre-trained models in this repo.

    • Pose estimation
      • ResNet, MobileNetV2, HRNet, and more.

    New Models

    We provide additional models for previous tasks

    • Object detection
      • Libra R-CNN, HRNet.
    • Instance segmentation
      • GCNet, HRNet.
    • Semantic segmentation / drivable area
      • NLNet, PointRend.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Oct 29, 2021)

    BDD100K Models 1.0.0 Release

    teaser

    • Highlights
    • Tasks
    • Models
    • Contribution

    Highlights

    The model zoo for BDD100K, the largest driving video dataset, is open for business! It contains more than 100 pre-trained models for 7 tasks. Each model also comes with results and visualization on val and test sets. We also provide documentation for community contribution so that everyone can include their models in this repo.

    Tasks

    We currently support 7 tasks

    • Image Tagging
    • Object Detection
    • Instance Segmentation
    • Semantic Segmentation
    • Drivable Area
    • Multiple Object Tracking (MOT)
    • Multiple Object Tracking and Segmentation (MOTS)

    Each task includes

    • Official evaluation results, model weights, predictions, and visualizations.
    • Detailed instructions for evaluation and visualization.

    Models

    We include popular network models for each task

    • Image tagging
      • VGG, ResNet, and DLA.
    • Object detection
      • Cascade R-CNN, Sparse R-CNN, Deformable ConvNets v2, and more.
    • Instance segmentation
      • Mask R-CNN, Cascade Mask R-CNN, HRNet, and more.
    • Semantic segmentation / drivable area
      • Deeplabv3+, CCNet, DNLNet, and more.
    • Multiple object tracking (MOT)
      • QDTrack.
    • Multiple object tracking and segmentation (MOTS)
      • PCAN.

    Contribution

    We encourage the BDD100K dataset users to contribute their models to this repo, so that all the info can be used for further result reproduction and analysis. The detailed instruction and model submission template are at the contribution page.

    Source code(tar.gz)
    Source code(zip)
Owner
ETH VIS Group
Visual Intelligence and Systems Group at ETH Zürich
ETH VIS Group
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022