Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

Related tags

Deep LearningJMedSeg
Overview

THU模式识别2021春 -- Jittor 医学图像分割

模型列表

本仓库收录了课程作业中同学们采用jittor框架实现的如下模型:

  • UNet
  • SegNet
  • DeepLab V2
  • DANet
  • EANet
  • HarDNet及其改动HarDNet_alter
  • PSPNet
  • OCNet
  • OCRNet
  • DLinkNet
  • AttentionUNet
  • UNet++
  • UNet+++
  • DenseUNet
  • TernausNet
  • CSNet
  • SCSENet
  • U2Net
  • U2Net-small(轻量化的U2Net)
  • Multi-ResUNet
  • R2 UNet
  • R2 Attention UNet
  • LightNet
  • OneNet(轻量化的UNet)
  • CENet
  • LRF-EANet
  • SimpleUNet
  • SETR

课程同学提出的优秀方案

增加小模型的鲁棒性

成员:汪元标,黄翰,李响,郑勋

  • Spatial Transformer Network(STN)

    通过对图片做自适应的仿射变换提高模型的鲁棒性

    其中Localization Network采用了多层卷积block的结构,输出通道数分别为8, 16, 32, 64,每个block包括一个3x3的二维卷积,BatchNorm层以及ReLU激活函数,最后经过一个Adaptive Average Pool层实现对多尺寸的支持,参见 advance/stn.py

  • 对比学习自监督预训练

    为了学习CT图像的Latent Feature,采用了对比学习的算法,使用了InfoNCE作为损失函数,采用Memory Bank来采样负例。

  • 数据增强

    采取了颜色空间的变换,包含亮度、对比度、色相、色调的随机变换。

  • 效果

    经过改动后的UNet有很好的鲁棒性。即使是智能手机拍摄的照片也可以很好地识别

  • demo

    • 参见清华云盘链接

    • 用法

      > export FLASK_APP='app.py'
      > python -m flask run -p [PORT]

轻量化模型

游嘉诚

为了降低参数量,考虑使用组卷积(group conv),然而组卷积限制了通道之间的信息交流。传统channel shuffle 限制了各 group 信息交流的表达力,同时内存访问连续性差或MACS大。于是提出了领域通道平移(channel shift),即通道顺序平移0.5*group,保证各组只与邻域交流,也许可能使得关系密切的组也许会趋向聚在一起。网络开始使用$4\times4$卷积核和stride=4进行四倍下采样,最终使用转置卷积ConvTranspose进行4倍上采样。类似densenet思想,网络将特征图进行通道拼接后进行转置卷积上采样。

二、数据

腰椎骨松质分割数据集

协和医院和中山医院分别提供了腰椎数据集,经过同学们的标注,从协和数据集中划分出了训练集、验证集和测试集。

协和数据集选择并标注了腰椎3,腰椎4的CT片,其中:

  • 训练集:包含85人共计1442张腰椎CT片

  • 验证集:包含31人共计549张腰椎CT片

  • 测试集:包含36人共计615张腰椎CT片

下图展示了协和数据集的样例

中山数据集被用于测试模型的跨数据集泛化性能,中山数据集包含大图和小图两种类型,选择并标注了腰椎1,腰椎2的CT片。其中:

  • 大图:包含134人共计858张腰椎CT片

  • 小图:包含134人共计868张腰椎CT片

下图分别是中山数据集的大图和小图样例

胰腺分割数据集

胰腺分割数据集包含

  • 训练集:包含8人共计1720张CT片

  • 验证集:包含2人共计424张CT片

  • 测试集:包含2人共计401张CT片

下载地址

清华云盘 数据下载成功后将压缩包解压为 ./data 文件夹即可。

运行方法

  1. 配置相应环境,安装Jittor最新版本

  2. 下载数据集

  3. 下载一些模型必须的ImageNet预训练权重,并解压至model/目录下.

  4. 如想要使用训练好的模型参数,可在这里下载胰腺数据上训练完成的模型参数,也可以先下载可视化结果先观察模型效果。

  5. 运行训练/测试/可视化

usage: run.py [-h]
              [--model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}]
              [--pretrain] [--checkpoint CHECKPOINT] --dataset
              {xh,xh_hard,zs_big,zs_small,pancreas} --mode
              {train,test,predict,debug} [--load LOAD] [--aug] [--cuda]
              [--stn] [-o {Adam,SGD}] [-e EPOCHS] [-b BATCH_SIZE] [-l LR]
              [-c CLASS_NUM] [--loss LOSS] [-w BCE_WEIGHT] [-r RESULT_DIR]
              [--poly]

optional arguments:
  -h, --help            show this help message and exit
  --model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}
                        choose the model
  --pretrain            whether to use pretrained weights
  --checkpoint CHECKPOINT
                        the location of the pretrained weights
  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                        choose a dataset
  --mode {train,test,predict,debug}
                        select a mode
  --load LOAD           the location of the model weights for testing
  --aug                 whether to use color augmentation
  --cuda                whether to use CUDA acceleration
  --stn                 whether to use spatial transformer network
  -o {Adam,SGD}, --optimizer {Adam,SGD}
                        select an optimizer
  -e EPOCHS, --epochs EPOCHS
                        num of training epochs
  -b BATCH_SIZE, --batch-size BATCH_SIZE
                        batch size for training
  -l LR, --learning-rate LR
                        learning rate
  -c CLASS_NUM, --class-num CLASS_NUM
                        pixel-wise classes
  --loss LOSS           Choose from 'ce', 'iou', 'dice', 'focal', if CE loss
                        is selected, you should use a `weight` parameter
  -w BCE_WEIGHT         use this weight if BCE loss is selected; if w is
                        given, then the weights for positive and negative
                        classes will be w and 2.0 - w respectively
  -r RESULT_DIR, --resultdir RESULT_DIR
                        test result output directory
  --poly                whether to use polynomial learning rate scheduler
  1. 运行对比学习预训练
usage: run_ssl.py [-h]
                  [--model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}]
                  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                  [--save SAVE] [-e EPOCHS] [-c CLASS_NUM] [-b BATCH_SIZE]
                  [--channel EMBEDDING_CHANNEL] [--layer LAYER] [--lr LR]
                  [--pretrain]

optional arguments:
  -h, --help            show this help message and exit
  --model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}
                        choose a model network
  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                        select a dataset
  --save SAVE           model weights save path
  -e EPOCHS, --epochs EPOCHS
                        number of training epochs
  -c CLASS_NUM, --class-num CLASS_NUM
                        class number
  -b BATCH_SIZE, --batch-size BATCH_SIZE
                        training batch size
  --channel EMBEDDING_CHANNEL
                        number of channels of embedded feature maps
  --layer LAYER         layer to extract features from
  --lr LR               learning rate
  --pretrain

运行示例 参见train.sh, batch_test.sh, pretrain.sh

四、实验结果

胰腺分割数据集

各模型均采用相同超参数,学习率为3e-4,迭代次数50次,以权重为[0.8, 0.2]的交叉熵损失函数进行训练,参见train.sh中dataset为pancreas的部分。结果如下:

Model Dice mIoU
UNet 0.7292 0.6477
SegNet 0.6291 0.5726
DeepLab 0.8306 0.7467
DANet 0.7787 0.6928
EANet 0.6753 0.6055
HarDNet 0.7491 0.6654
HarDNet_alter 0.7779 0.6920
PSPNet 0.7772 0.6914
OCNet 0.7789 0.6930
OCRNet 0.7034 0.6272
DLinkNet 0.4995 0.4989
AttentionUNet 0.7691 0.6836
UNet++ 0.8282 0.7439
UNet+++ 0.7892 0.7030
DenseUNet 0.8053 0.7194
TernausNet 0.6752 0.6055
CSNet 0.4994 0.4989
SCSENet 0.4994 0.4989
U2Net 0.8143 0.7289
U2Net-Small 0.8338 0.7502
Multi-ResUnet 0.7230 0.6427
R2UNet 0.8289 0.7447
R2AttentionUNet 0.8084 0.7227
LightNet 0.8006 0.7145
OneNet 0.7754 0.6896
CENet 0.7583 0.6735
LRF-EANet 0.6942 0.6197
SimpleUNet 0.7395 0.6569
SETR 0.4994 0.4989
UNet-SSL 0.8026 0.7165
UNet-STN-SSL 0.7926 0.7063
UNet-Aug-STN-SSL 0.6938 0.6192

腰椎骨松质分割数据集

  1. 协和数据集

    下表展示了三种模型使用不同损失函数及加权组合的结果

    mIoU CE IoU Dice Focal 0.8CE+0.2IoU 0.5CE+0.5IoU 0.2CE+0.8IoU 0.5CE+0.5Dice
    UNet 95.49 95.56 95.41 95.43 95.48 95.25 95.42 95.17
    HRnet 95.22 95.23 N/A N/A
    SETR 87.59 87.81 85.92 83.85 88.34 83.94 87.52 87.78
  2. 中山数据集

    下表记录了协和数据集上训练的OneNet模型在中山数据集上的表现

Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022