[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

Related tags

Deep LearningCoCLR
Overview

CoCLR: Self-supervised Co-Training for Video Representation Learning

arch

This repository contains the implementation of:

  • InfoNCE (MoCo on videos)
  • UberNCE (supervised contrastive learning on videos)
  • CoCLR

Link:

[Project Page] [PDF] [Arxiv]

News

  • [2021.01.29] Upload both RGB and optical flow dataset for UCF101 (links).
  • [2021.01.11] Update our paper for NeurIPS2020 final version: corrected InfoNCE-RGB-linearProbe baseline result in Table1 from 52.3% (pretrained for 800 epochs, unnessary and unfair) to 46.8% (pretrained for 500 epochs, fair comparison). Thanks @liuhualin333 for pointing out.
  • [2020.12.08] Update instructions.
  • [2020.11.17] Upload pretrained weights for UCF101 experiments.
  • [2020.10.30] Update "draft" dataloader files, CoCLR code, evaluation code as requested by some researchers. Will check and add detailed instructions later.

Pretrain Instruction

  • InfoNCE pretrain on UCF101-RGB
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_nce.py --net s3d --model infonce --moco-k 2048 \
--dataset ucf101-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • InfoNCE pretrain on UCF101-Flow
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_nce.py --net s3d --model infonce --moco-k 2048 \
--dataset ucf101-f-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • CoCLR pretrain on UCF101 for one cycle
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 2048 \
--dataset ucf101-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 100 --schedule 80 --name_prefix Cycle1-FlowMining_ -j 8 \
--pretrain {rgb_infoNCE_checkpoint.pth.tar} {flow_infoNCE_checkpoint.pth.tar}
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 2048 --reverse \
--dataset ucf101-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 100 --schedule 80 --name_prefix Cycle1-RGBMining_ -j 8 \
--pretrain {flow_infoNCE_checkpoint.pth.tar} {rgb_cycle1_checkpoint.pth.tar} 
  • InfoNCE pretrain on K400-RGB
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 main_infonce.py --net s3d --model infonce --moco-k 16384 \
--dataset k400-2clip --lr 1e-3 --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • InfoNCE pretrain on K400-Flow
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 teco_fb_main.py --net s3d --model infonce --moco-k 16384 \
--dataset k400-f-2clip --lr 1e-3 --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • CoCLR pretrain on K400 for one cycle
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 16384 \
--dataset k400-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 50 --schedule 40 --name_prefix Cycle1-FlowMining_ -j 8 \
--pretrain {rgb_infoNCE_checkpoint.pth.tar} {flow_infoNCE_checkpoint.pth.tar}
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 16384 --reverse \
--dataset k400-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 50 --schedule 40 --name_prefix Cycle1-RGBMining_ -j 8 \
--pretrain {flow_infoNCE_checkpoint.pth.tar} {rgb_cycle1_checkpoint.pth.tar} 

Finetune Instruction

cd eval/ e.g. finetune UCF101-rgb:

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what ft --epochs 500 --schedule 400 450 \
--pretrain {selected_rgb_pretrained_checkpoint.pth.tar}

then run the test with 10-crop (test-time augmentation is helpful, 10-crop gives better result than center-crop):

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what ft --epochs 500 --schedule 400 450 \
--test {selected_rgb_finetuned_checkpoint.pth.tar} --ten_crop

Nearest-neighbour Retrieval Instruction

cd eval/ e.g. nn-retrieval for UCF101-rgb

CUDA_VISIBLE_DEVICES=0 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --test {selected_rgb_pretrained_checkpoint.pth.tar} --retrieval

Linear-probe Instruction

cd eval/

from extracted feature

The code support two methods on linear-probe, either feed the data end-to-end and freeze the backbone, or train linear layer on extracted features. Both methods give similar best results in our experiments.

e.g. on extracted features (after run NN-retrieval command above, features will be saved in os.path.dirname(checkpoint))

CUDA_VISIBLE_DEVICES=0 python feature_linear_probe.py --dataset ucf101 \
--test {feature_dirname} --final_bn --lr 1.0 --wd 1e-3

Note that the default setting should give an alright performance, maybe 1-2% lower than our paper's figure. For different datasets, lr and wd need to be tuned from lr: 0.1 to 1.0; wd: 1e-4 to 1e-1.

load data and freeze backbone

alternatively, feed data end-to-end and freeze the backbone.

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what last --epochs 100 --schedule 60 80 \
--optim sgd --lr 1e-1 --wd 1e-3 --final_bn --pretrain {selected_rgb_pretrained_checkpoint.pth.tar}

Similarly, lr and wd need to be tuned for different datasets for best performance.

Dataset

Result

Finetune entire network for action classification on UCF101: arch

Pretrained Weights

Our models:

Baseline models:

Kinetics400-pretrained models:

Owner
Tengda Han
Tengda Han
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
202 Jan 06, 2023
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022