Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Related tags

Deep LearningCIConv
Overview

Zero-Shot Domain Adaptation with a Physics Prior

[arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and Jan van Gemert.

This repository contains the PyTorch implementation of Color Invariant Convolutions and all experiments and datasets described in the paper.

Abstract

We explore the zero-shot setting for day-night domain adaptation. The traditional domain adaptation setting is to train on one domain and adapt to the target domain by exploiting unlabeled data samples from the test set. As gathering relevant test data is expensive and sometimes even impossible, we remove any reliance on test data imagery and instead exploit a visual inductive prior derived from physics-based reflection models for domain adaptation. We cast a number of color invariant edge detectors as trainable layers in a convolutional neural network and evaluate their robustness to illumination changes. We show that the color invariant layer reduces the day-night distribution shift in feature map activations throughout the network. We demonstrate improved performance for zero-shot day to night domain adaptation on both synthetic as well as natural datasets in various tasks, including classification, segmentation and place recognition.

Getting started

All code and experiments have been tested with PyTorch 1.7.0.

Create a local clone of this repository:

git clone https://github.com/Attila94/CIConv

The method directory contains the color invariant convolution (CIConv) layer, as well as custom ResNet and VGG models using the CIConv layer. To use the CIConv layer in your own architecture, simply copy ciconv2d.py to the desired directory and add it as a regular PyTorch layer as

from ciconv2d import CIConv2d
ciconv = CIConv2d('W', k=3, scale=0.0)

See resnet.py and vgg.py for examples.

Datasets

Shapenet Illuminants

[Download link]

Shapenet Illuminants is used in the synthetic classification experiment. The images are rendered from a subset of the ShapeNet dataset using the physically based renderer Mitsuba. The scene is illuminated by a point light modeled as a black-body radiator with temperatures ranging between [1900, 20000] K and an ambient light source. The training set contains 1,000 samples for each of the 10 object classes recorded under "normal" lighting conditions (T = 6500 K). Multiple test sets with 300 samples per class are rendered for a variety of light source intensities and colors.

shapenet_illuminants

Common Objects Day and Night

[Download link]

Common Objects Day and Night (CODaN) is a natural day-night image classification dataset. More information can be found on the separate Github repository: https://github.com/Attila94/CODaN.

codan

Experiments

1. Synthetic classification

  1. Download [link] and unpack the Shapenet Illuminants dataset.
  2. In your local CIConv clone navigate to experiments/1_synthetic_classification and run
python train.py --root 'path/to/shapenet_illuminants' --hflip --seed 0 --invariant 'W'

This will train a ResNet-18 with the 'W' color invariant from scratch and evaluate on all test sets.

shapenet_illuminants_results

Classification accuracy of ResNet-18 with various color invariants. RGB (not invariant) performance degrades when illumination conditions differ between train and test set, while color invariants remain more stable. W performs best overall.

2. CODaN classification

  1. Download the Common Objects Day and Night (CODaN) dataset from https://github.com/Attila94/CODaN.
  2. In your local CIConv clone navigate to experiments/2_codan_classification and run
python train.py --root 'path/to/codan' --invariant 'W' --scale 0. --hflip --jitter 0.3 --rr 20 --seed 0

This will train a ResNet-18 with the 'W' color invariant from scratch and evaluate on all test sets.

Selected results from the paper:

Method Day (% accuracy) Night (% accuracy)
Baseline 80.39 +- 0.38 48.31 +- 1.33
E 79.79 +- 0.40 49.95 +- 1.60
W 81.49 +- 0.49 59.67 +- 0.93
C 78.04 +- 1.08 53.44 +- 1.28
N 77.44 +- 0.00 52.03 +- 0.27
H 75.20 +- 0.56 50.52 +- 1.34

3. Semantic segmentation

  1. Download and unpack the following public datasets: Cityscapes, Nighttime Driving, Dark Zurich.

  2. In your local CIConv clone navigate to experiments/3_segmentation.

  3. Set the proper dataset locations in train.py.

  4. Run

    python train.py --hflip --rc --jitter 0.3 --scale 0.3 --batch-size 6 --pretrained --invariant 'W'

Selected results from the paper:

Method Nighttime Driving (mIoU) Dark Zurich (mIoU)
RefineNet [baseline] 34.1 30.6
W-RefineNet [ours] 41.6 34.5

4. Visual place recognition

  1. Setup conda environment

    conda create -n ciconv python=3.9 mamba -c conda-forge
    conda activate ciconv
    mamba install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 scikit-image -c pytorch
  2. Navigate to experiments/4_visual_place_recognition/cnnimageretrieval-pytorch/.

  3. Run

    git submodule update --init # download a fork of cnnimageretrieval-pytorch
    sh cirtorch/utils/setup_tests.sh # download datasets and pre-trained models 
    python3 -m cirtorch.examples.test --network-path data/networks/retrieval-SfM-120k_w_resnet101_gem/model.path.tar --multiscale '[1, 1/2**(1/2), 1/2]' --datasets '247tokyo1k' --whitening 'retrieval-SfM-120k'
  4. Use --network-path retrievalSfM120k-resnet101-gem to compare against the vanilla method (without using the color invariant trained ResNet101).

  5. Use --datasets 'gp_dl_nr' to test on the GardensPointWalking dataset.

Selected results from the paper:

Method Tokyo 24/7 (mAP)
ResNet101 GeM [baseline] 85.0
W-ResNet101 GeM [ours] 88.3

Citation

If you find this repository useful for your work, please cite as follows:

@article{lengyel2021zeroshot,
      title={Zero-Shot Domain Adaptation with a Physics Prior}, 
      author={Attila Lengyel and Sourav Garg and Michael Milford and Jan C. van Gemert},
      year={2021},
      eprint={2108.05137},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Attila Lengyel
PhD candidate @ TU Delft Computer Vision Lab.
Attila Lengyel
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022