Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

Overview

SilkyArcTool

English

Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. If you want to work with Silky Engine's .mes scripts, use mesScriptAsseAndDisassembler instead.

Why this tool was created, if there are other tools that can work with this type of archive? The answer is simple: because there was no actually good enough tools. One tool can only extract the data, other -- only pack, but without using original compression, that resulting in outrageous big output archives. My tool solves all the issues -- not only it can extract archives, but also pack them from files, compressing it by algorithm (variation of LZSS), extraction of which was implemented by Silky Engine. Through the tool has one problem -- it works quite slow, especially for packing, so you may need to wait for some minutes (due to implementation compression algorithm on Python).

Русский

Двуязычное средство (рус+англ) для распаковки и запаковки архивов Silky Engine. Не стоит путать его с разновидностью .arc, используемой в Ai6WIN. Ежели вам нужно работать со скриптами .mes Silky Engine, используйте mesScriptAsseAndDisassembler.

Почему же это средство было создано, ежель и так есть средства, что могут работать с сим типом архива? Ответ прост: ни одно из тех существующих средств не является достаточно хорошим. Одно может только извлекать, другое -- только запаковывать, однако ж без использования оригинального алгоритма сжатия, из-за чего архивы получаются большими сверх всякой меры. Но моё средство исправляет эти проблемы: оно может как распаковывать данные, так и запаковывать их, причём сжимая файлы так, как их хочет видеть Silky Engine (разновидностью LZSS). Единственная, однако, проблема у средства есть -- несколько медленно работает оно, особенно при запаковке, так что может придётся прождать несколько минут (ввиду реализации алгоритма сжатия на Python).

Usage

English

image

  1. Run the tool (main.py or .exe).
  2. Print filename (with extension!!!) or choose it by clicking on button "...".
  3. Print directory or choose it by clicking on button "...".
  4. Print "0", if thou want to unpack, or "1", if thou want to pack.
  5. Just wait until it done.

Русский

image

  1. Запустите пакет средств (main.py иль .exe).
  2. Введите имя архива (с расширением!!!) или выберите его, нажав на кнопку "...".
  3. Введите имя директории файлов или выберите его, нажав на кнопку "...".
  4. Введите "0", коли распаковать желаете, али "1", коли запаковать желаете.
  5. Ждите завершения.

Tested on:

On English

На русском

You might also like...
Creating a chess engine using GPT-3
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

Tool which allow you to detect and translate text.
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

Comments
  • Invalid argument

    Invalid argument

    I tried your tool with the .arc files of the game "[Silky's] Gakuen Saimin Reido -Sakki made, Daikirai Datta Hazu na no ni-" (学園催眠隷奴~さっきまで、大嫌いだったはずなのに~), but it keeps giving me this error:

    image

    opened by Nephiro 3
  • Extraction fails if archives are on other drive

    Extraction fails if archives are on other drive

    Exception in Tkinter callback
    Traceback (most recent call last):
      File "C:\Program Files\Python39\lib\tkinter\__init__.py", line 1892, in __call__
      File "C:\Users\Александр\Desktop\Tester\SilkyArcTool\gui.py", line 316, in _choose_file
      File "C:\Program Files\Python39\lib\ntpath.py", line 703, in relpath
    ValueError: path is on mount 'C:', start on mount 'Y:'
    Exception in Tkinter callback
    Traceback (most recent call last):
      File "C:\Program Files\Python39\lib\tkinter\__init__.py", line 1892, in __call__
      File "C:\Users\Александр\Desktop\Tester\SilkyArcTool\gui.py", line 316, in _choose_file
      File "C:\Program Files\Python39\lib\ntpath.py", line 703, in relpath
    ValueError: path is on mount 'C:', start on mount 'Y:'
    

    Simple fix is move archive to same drive as the tool

    opened by dobacco 2
Releases(1.1)
Owner
Tester
Tester Testerov Testerovich. "Test, test and test once more!"
Tester
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
Fidibo.com comments Sentiment Analyser

Fidibo.com comments Sentiment Analyser Introduction This project first asynchronously grab Fidibo.com books comment data using grabber.py and then sav

Iman Kermani 3 Apr 15, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
1 Jun 28, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022