Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Overview

Self-attention building blocks for computer vision applications in PyTorch

Implementation of self attention mechanisms for computer vision in PyTorch with einsum and einops. Focused on computer vision self-attention modules.

Install it via pip

It would be nice to install pytorch in your enviroment, in case you don't have a GPU.

pip install self-attention-cv

Related articles

More articles are on the way.

Code Examples

Multi-head attention

import torch
from self_attention_cv import MultiHeadSelfAttention

model = MultiHeadSelfAttention(dim=64)
x = torch.rand(16, 10, 64)  # [batch, tokens, dim]
mask = torch.zeros(10, 10)  # tokens X tokens
mask[5:8, 5:8] = 1
y = model(x, mask)

Axial attention

import torch
from self_attention_cv import AxialAttentionBlock
model = AxialAttentionBlock(in_channels=256, dim=64, heads=8)
x = torch.rand(1, 256, 64, 64)  # [batch, tokens, dim, dim]
y = model(x)

Vanilla Transformer Encoder

import torch
from self_attention_cv import TransformerEncoder
model = TransformerEncoder(dim=64,blocks=6,heads=8)
x = torch.rand(16, 10, 64)  # [batch, tokens, dim]
mask = torch.zeros(10, 10)  # tokens X tokens
mask[5:8, 5:8] = 1
y = model(x,mask)

Vision Transformer with/without ResNet50 backbone for image classification

import torch
from self_attention_cv import ViT, ResNet50ViT

model1 = ResNet50ViT(img_dim=128, pretrained_resnet=False, 
                        blocks=6, num_classes=10, 
                        dim_linear_block=256, dim=256)
# or
model2 = ViT(img_dim=256, in_channels=3, patch_dim=16, num_classes=10,dim=512)
x = torch.rand(2, 3, 256, 256)
y = model2(x) # [2,10]

A re-implementation of Unet with the Vision Transformer encoder

import torch
from self_attention_cv.transunet import TransUnet
a = torch.rand(2, 3, 128, 128)
model = TransUnet(in_channels=3, img_dim=128, vit_blocks=8,
vit_dim_linear_mhsa_block=512, classes=5)
y = model(a) # [2, 5, 128, 128]

Bottleneck Attention block

import torch
from self_attention_cv.bottleneck_transformer import BottleneckBlock
inp = torch.rand(1, 512, 32, 32)
bottleneck_block = BottleneckBlock(in_channels=512, fmap_size=(32, 32), heads=4, out_channels=1024, pooling=True)
y = bottleneck_block(inp)

Position embeddings are also available

1D Positional Embeddings

import torch
from self_attention_cv.pos_embeddings import AbsPosEmb1D,RelPosEmb1D

model = AbsPosEmb1D(tokens=20, dim_head=64)
# batch heads tokens dim_head
q = torch.rand(2, 3, 20, 64)
y1 = model(q)

model = RelPosEmb1D(tokens=20, dim_head=64, heads=3)
q = torch.rand(2, 3, 20, 64)
y2 = model(q)

2D Positional Embeddings

import torch
from self_attention_cv.pos_embeddings import RelPosEmb2D
dim = 32  # spatial dim of the feat map
model = RelPosEmb2D(
    feat_map_size=(dim, dim),
    dim_head=128)

q = torch.rand(2, 4, dim*dim, 128)
y = model(q)

References

  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
  2. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., & Chen, L. C. (2020, August). Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In European Conference on Computer Vision (pp. 108-126). Springer, Cham.
  3. Srinivas, A., Lin, T. Y., Parmar, N., Shlens, J., Abbeel, P., & Vaswani, A. (2021). Bottleneck Transformers for Visual Recognition. arXiv preprint arXiv:2101.11605.
  4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Comments
  • Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that? Could you please help me solve it? Thank you

    Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that? Could you please help me solve it? Thank you

    Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that?I `Traceback (most recent call last): File "self-attention-cv/tests/test_TransUnet.py", line 14, in test_TransUnet() File "/self-attention-cv/tests/test_TransUnet.py", line 11, in test_TransUnet y = model(a) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "self-attention-cv\self_attention_cv\transunet\trans_unet.py", line 88, in forward y = self.project_patches_back(y) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\linear.py", line 93, in forward return F.linear(input, self.weight, self.bias) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\functional.py", line 1692, in linear output = input.matmul(weight.t()) RuntimeError: mat1 dim 1 must match mat2 dim 0

    Process finished with exit code 1 ` Could you please help me solve it? Thank you.

    opened by yezhengjie 7
  • TransUNet - Why is the patch_dim set to 1?

    TransUNet - Why is the patch_dim set to 1?

    Hi,

    Can you please explain why is the patch_dim set to 1 in TransUNet class? Thank you in advance!

    https://github.com/The-AI-Summer/self-attention-cv/blob/8280009366b633921342db6cab08da17b46fdf1c/self_attention_cv/transunet/trans_unet.py#L54

    opened by dsitnik 7
  • Question: Sliding Window Module for Transformer3dSeg Object

    Question: Sliding Window Module for Transformer3dSeg Object

    I was wondering whether or not you've implemented an example using the network in a 3d medical segmentation task and/or use case? If this network only exports the center slice of a patch then we would need a wrapper function to iterate through all patches in an image to get the final prediction for the entire volume. From the original paper, I assume they choose 10 patches at random from an image during training, but it's not too clear how they pieced everything together during testing.

    Your thoughts on this would be greatly appreciated!

    See: https://github.com/The-AI-Summer/self-attention-cv/blob/33ddf020d2d9fb9c4a4a3b9938383dc9b7405d8c/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L10

    opened by jmarsil 5
  • ResNet + Pyramid Vision Transformer Version 2

    ResNet + Pyramid Vision Transformer Version 2

    Thank you for your work with a clear explanation. As you know, ViT doesn't work on small datasets and I am implementing ResNet34 with Pyramid Vision Transformer Version 2 to make it better. The architecture of ViT and PVT V2 is completely different. Could you provide me some help to implement it? please

    opened by khawar-islam 3
  • Request for Including UNETR

    Request for Including UNETR

    Thanks for great work ! I noticed nice implementation of this paper (https://arxiv.org/abs/2103.10504) here:

    https://github.com/tamasino52/UNETR/blob/main/unetr.py

    It would be great if this can also be included in your repo, since it comes with lots of other great features. So we can explore more.

    Thanks ~

    opened by Siyuan89 3
  • ImageNet Pretrained TimesFormer

    ImageNet Pretrained TimesFormer

    I see you have recently added the TimesFormer model to this repository. In the paper, they initialize their model weights from ImageNet pretrained weights of ViT. Does your implementation offer this too? Thanks!

    opened by RaivoKoot 3
  • Do the encoder modules incorporate positional encoding?

    Do the encoder modules incorporate positional encoding?

    I am wondering if I use say the LinformerEncoder if I have to add the position encoding or if that's already done? From the source files it doesn't seem to be there, but I'm not sure how to include the position encoding as they seem to need the query which isn't available when just passing data directly to the LinformerEncoder. I very well may be missing something any help would be great. Perhaps an example using positional encoding would be good.

    opened by jfkback 3
  • use AxialAttention on gpu

    use AxialAttention on gpu

    I try to use AxialAttention on gpu, but I get a mistake.Can you give me some tips about using AxialAttention on gpu. Thanks! mistake: RuntimeError: expected self and mask to be on the same device, but got mask on cpu and self on cuda:0

    opened by Iverson-Al 2
  • Axial attention

    Axial attention

    What is the meaning of qkv_channels? https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/axial_attention_deeplab/axial_attention.py#L32

    opened by Jayden9912 1
  • Convolution-Free Medical Image Segmentation using Transformers

    Convolution-Free Medical Image Segmentation using Transformers

    Thank you very much for your contribution. As a novice, I have a doubt. In tranf3dseg, the output of the model is the prediction segmentation of the center patch, so how can I get the segmentation of the whole input image? I am looking forward to any reply.

    opened by WinsaW 1
  • Regression with attention

    Regression with attention

    Hello!

    thanks for sharing this nice repo :)

    I'm trying to use ViT to do regression on images. I'd like to predict 6 floats per image.

    My understanding is that I'd need to simply define the network as

    vit = ViT(img_dim=128,
                   in_channels=3,
                   patch_dim=16,
                   num_classes=6,
                   dim=512)
    

    and during training call

    vit(x)
    

    and compute the loss as MSE instead of CE.

    The network actually runs but it doesn't seem to converge. Is there something obvious I am missing?

    many thanks!

    opened by alemelis 1
  • Segmentation for full image

    Segmentation for full image

    Hi,

    Thank you for your effort and time in implementing this. I have a quick question, I want to get segmentation for full image not just for the middle token, would it be correct to change self.tokens to self.p here:

    https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L66

    and change this:

    https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L94

    to

    y = self.mlp_seg_head(y)

    opened by aqibsaeed 0
Releases(1.2.3)
Owner
AI Summer
Learn Deep Learning and Artificial Intelligence
AI Summer
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022