Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Overview

Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You Need"

Abstract: The ability to identify whether or not a test sample belongs to one of the semantic classes in a classifier's training set is critical to practical deployment of the model. This task is termed open-set recognition (OSR) and has received significant attention in recent years. In this paper, we first demonstrate that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes. We find that this relationship holds across loss objectives and architectures, and further demonstrate the trend both on the standard OSR benchmarks as well as on a large-scale ImageNet evaluation. Second, we use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy, and with this strong baseline achieve a new state-of-the-art on the most challenging OSR benchmark. Similarly, we boost the performance of the existing state-of-the-art method by improving its closed-set accuracy, but this does not surpass the strong baseline on the most challenging dataset. Our third contribution is to reappraise the datasets used for OSR evaluation, and construct new benchmarks which better respect the task of detecting semantic novelty, as opposed to low-level distributional shifts as tackled by neighbouring machine learning fields. In this new setting, we again demonstrate that there is negligible difference between the strong baseline and the existing state-of-the-art.

image

Running

Dependencies

pip install -r requirements.txt

Datasets

A number of datasets are used in this work, many of them can be downloaded directly through PyTorch servers:

FGVC Open-set Splits:

For the proposed FGVC open-set benchmarks, the directory data/open_set_splits contains the proposed class splits as .pkl files. The files also include information on which open-set classes are most similar to which closed-set classes.

Config

Set paths to datasets and pre-trained models (for fine-grained experiments) in config.py

Set SAVE_DIR (logfile destination) and PYTHON (path to python interpreter) in bash_scripts scripts.

Run

To recreate results on TinyImageNet (Table 2). Our runs give us 82.60% AUROC for both (ARPL + CS)+ and Cross-Entropy+.

bash bash_scripts/osr_train_tinyimagenet.sh

Optimal Hyper-parameters:

We tuned label smoothing and RandAug hyper-parameters to optimise closed-set accuracy on a single random validation split for each dataset. For other hyper-parameters (image size, batch size, learning rate) we took values from the open-set literature for the standard datasets (specifically, the ARPL paper) and values from the FGVC literature for the proposed FGVC benchmarks.

Cross-Entropy optimal hyper-parameters:

Dataset Image Size Learning Rate RandAug M RandAug N Label Smoothing Batch Size
MNIST 32 0.1 1 8 0.0 128
SVHN 32 0.1 1 18 0.0 128
CIFAR-10 32 0.1 1 6 0.0 128
CIFAR + N 32 0.1 1 6 0.0 128
TinyImageNet 64 0.01 1 9 0.9 128
CUB 448 0.001 2 30 0.3 32
FGVC-Aircraft 448 0.001 2 15 0.2 32

ARPL + CS optimal hyper-parameters:

(Note the lower learning rate for TinyImageNet)

Dataset Image Size Learning Rate RandAug M RandAug N Label Smoothing Batch Size
MNIST 32 0.1 1 8 0.0 128
SVHN 32 0.1 1 18 0.0 128
CIFAR10 32 0.1 1 15 0.0 128
CIFAR + N 32 0.1 1 6 0.0 128
TinyImageNet 64 0.001 1 9 0.9 128
CUB 448 0.001 2 30 0.2 32
FGVC-Aircraft 448 0.001 2 18 0.1 32

Other

This repo also contains other useful utilities, including:

  • utils/logfile_parser.py: To directly parse stdout outputs for Accuracy / AUROC metrics
  • data/open_set_datasets.py: A useful framework for easily splitting existing datasets into controllable open-set splits into train, val, test_known and test_unknown. Note: ImageNet has not yet been integrated here.
  • utils/schedulers.py: Implementation of Cosine Warm Restarts with linear rampup as a PyTorch learning rate scheduler

Citation

If you use this code in your research, please consider citing our paper:

@article{vaze21openset,
    author  = {Sagar Vaze and Kai Han and Andrea Vedaldi and Andrew Zisserman},
    title   = {Open-Set Recognition: A Good Closed-Set Classifier is All You Need},
    journal = {arXiv preprint},
    year    = {2021},
  }

Furthermore, please also consider citing Adversarial Reciprocal Points Learning for Open Set Recognition, upon whose code we build this repo.

BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023