Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Overview

Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You Need"

Abstract: The ability to identify whether or not a test sample belongs to one of the semantic classes in a classifier's training set is critical to practical deployment of the model. This task is termed open-set recognition (OSR) and has received significant attention in recent years. In this paper, we first demonstrate that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes. We find that this relationship holds across loss objectives and architectures, and further demonstrate the trend both on the standard OSR benchmarks as well as on a large-scale ImageNet evaluation. Second, we use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy, and with this strong baseline achieve a new state-of-the-art on the most challenging OSR benchmark. Similarly, we boost the performance of the existing state-of-the-art method by improving its closed-set accuracy, but this does not surpass the strong baseline on the most challenging dataset. Our third contribution is to reappraise the datasets used for OSR evaluation, and construct new benchmarks which better respect the task of detecting semantic novelty, as opposed to low-level distributional shifts as tackled by neighbouring machine learning fields. In this new setting, we again demonstrate that there is negligible difference between the strong baseline and the existing state-of-the-art.

image

Running

Dependencies

pip install -r requirements.txt

Datasets

A number of datasets are used in this work, many of them can be downloaded directly through PyTorch servers:

FGVC Open-set Splits:

For the proposed FGVC open-set benchmarks, the directory data/open_set_splits contains the proposed class splits as .pkl files. The files also include information on which open-set classes are most similar to which closed-set classes.

Config

Set paths to datasets and pre-trained models (for fine-grained experiments) in config.py

Set SAVE_DIR (logfile destination) and PYTHON (path to python interpreter) in bash_scripts scripts.

Run

To recreate results on TinyImageNet (Table 2). Our runs give us 82.60% AUROC for both (ARPL + CS)+ and Cross-Entropy+.

bash bash_scripts/osr_train_tinyimagenet.sh

Optimal Hyper-parameters:

We tuned label smoothing and RandAug hyper-parameters to optimise closed-set accuracy on a single random validation split for each dataset. For other hyper-parameters (image size, batch size, learning rate) we took values from the open-set literature for the standard datasets (specifically, the ARPL paper) and values from the FGVC literature for the proposed FGVC benchmarks.

Cross-Entropy optimal hyper-parameters:

Dataset Image Size Learning Rate RandAug M RandAug N Label Smoothing Batch Size
MNIST 32 0.1 1 8 0.0 128
SVHN 32 0.1 1 18 0.0 128
CIFAR-10 32 0.1 1 6 0.0 128
CIFAR + N 32 0.1 1 6 0.0 128
TinyImageNet 64 0.01 1 9 0.9 128
CUB 448 0.001 2 30 0.3 32
FGVC-Aircraft 448 0.001 2 15 0.2 32

ARPL + CS optimal hyper-parameters:

(Note the lower learning rate for TinyImageNet)

Dataset Image Size Learning Rate RandAug M RandAug N Label Smoothing Batch Size
MNIST 32 0.1 1 8 0.0 128
SVHN 32 0.1 1 18 0.0 128
CIFAR10 32 0.1 1 15 0.0 128
CIFAR + N 32 0.1 1 6 0.0 128
TinyImageNet 64 0.001 1 9 0.9 128
CUB 448 0.001 2 30 0.2 32
FGVC-Aircraft 448 0.001 2 18 0.1 32

Other

This repo also contains other useful utilities, including:

  • utils/logfile_parser.py: To directly parse stdout outputs for Accuracy / AUROC metrics
  • data/open_set_datasets.py: A useful framework for easily splitting existing datasets into controllable open-set splits into train, val, test_known and test_unknown. Note: ImageNet has not yet been integrated here.
  • utils/schedulers.py: Implementation of Cosine Warm Restarts with linear rampup as a PyTorch learning rate scheduler

Citation

If you use this code in your research, please consider citing our paper:

@article{vaze21openset,
    author  = {Sagar Vaze and Kai Han and Andrea Vedaldi and Andrew Zisserman},
    title   = {Open-Set Recognition: A Good Closed-Set Classifier is All You Need},
    journal = {arXiv preprint},
    year    = {2021},
  }

Furthermore, please also consider citing Adversarial Reciprocal Points Learning for Open Set Recognition, upon whose code we build this repo.

Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022