Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Overview

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Last updated on January 30, 2022 by Thomas J. Nicoletti

I would like to preface this document by stating this is my second major project using Python. From my first project to now, I certainly improved upon my understanding of and proficiency with Python, though I still have a long journey ahead of me. I aim to keep learning more and more everyday, and hope this project provides some benefit to the greater applied social science community.

The purpose of this data mining script is to use random forest classification, in conjunction with factor analysis and other analytic techniques, to automatically yield feature importance metrics and related output for a driver analysis. Driver analysis quantifies the importance of independent variables (i.e., drivers) in predicting some outcome variable. Within this repository is a basic, simulated dataset created by me, containing five independent variables and one outcome variable. I am by no means an expert in simulating datasets, so I encourage everyone to use real-world data as a stress test for this statistical tool.

This tool will communicate with users using simple inputs via the Command Prompt. Once all mandatory and optional inputs are received, the analysis will run and send relevant information to the source folder; this potentially includes text files, images, and data files useful for model comprehension and validation, as well as statistically- and conceptually-informed decision-making. The most useful outputs will include the automatically generated feature importance plot and feature quadrant chart.

💻 Installation and Preparation

Please note that excerpts of code provided below are examples based on the driver.py script. As a self-taught programmer, I suggest reading through my insights, mixing them with a quick Google search and your own experiences, and then delving into the script itself.

For this project, I used Python 3.9, the Microsoft Windows operating system, and Microsoft Excel. As such, these act as the prerequisites for utilizing this repository successfully without any additional troubleshooting. Going forward, please ensure everything you download or install for this project ends up in the correct location (e.g., the same source folder).

Use pip to install relevant packages to the proper source folder using the Command Prompt and correct PATH. For example:

pip install numpy
pip install pandas

Please be sure to install each of the following packages: easygui, matplotlib, numpy, pandas, seaborn, string, factor_analyzer, scipy, sklearn, and statsmodels. If required, use the first section of the script to determine lacking dependencies, and proceed accordingly.

📑 Script Breakdown

The script begins by calling relevant libraries in Python, as well as defining Mahalanobis distance, which is used to identify multivariate outliers in a later step of this project. Additionally, the Command Prompt will read a simple set of instructions for the user, including important information regarding categorical features, the location of the outcome variable within the dataset, and a required revision for missing data. Furthermore, the script will allow the user to specify a random seed for easy replication of this driver analysis at a later date:

import easygui
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
...
def mahalanobis(x = None, data = None, cov = None):
	mu = x - np.mean(data)
    ...
	return mah.diagonal()
...
seed = int(input('Please enter your numerical random seed for replication purposes: '))
np.random.seed(seed)
text = open('random_seed.txt', 'w')

The script has an entire section dedicated to understanding your dataset, including a quick process for uploading your data file, removing missing data, adding an outlier status variable, determining the final sample size, classifying variables, and so on:

df = pd.read_csv(easygui.fileopenbox())
df.dropna(inplace = True)
df['Mahalanobis'] = mahalanobis(x = df, data = df.iloc[:, :len(df.columns)], cov = None)
df['PValue'] = 1 - chi2.cdf(df['Mahalanobis'], len(df.columns) - 1)
...
n = df.shape[0]
text = open('sample_size.txt', 'w')
...
x = df.iloc[:, :-1]
y = np.ravel(df.iloc[:, -1])
feat = df.columns[:-1]
mean = np.array(df.describe().loc['mean'][:-1])

The script then checks for relevant statistical assumptions needed before determining if your dataset is appropriate for factor analysis. This includes Bartlett's Test of Sphericity and the Kaiser-Meyer-Olkin Test. Additionally, a scree plot is produced using principal components analysis to assist in factor analysis decision-making. Once all of this is reviewed, the user will provide relevant inputs regarding their driver analysis model:

bart = calculate_bartlett_sphericity(x)
bart = (str(round(bart[1], 2)))
text = open('sphericity.txt', 'w')
...
kmo = calculate_kmo(x)
kmo = (str(round(kmo[1], 2)))
text = open('factorability.txt', 'w')
...
pca = PCA()
pca.fit(x)
comp = np.arange(pca.n_components_)
plt.figure()

When it comes to choosing whether to run random forest classification on the original variables or transformed factors, the above information is critical. The user will be able to decide both A) whether or not to use factor analysis, and B) how many factors should be used in extraction if applicable. Additionally, if the user opts for the factor analysis route, they will also be able to determine whether all the factors or just the highest loading variable per factor should be used (please see lines 139-150 in the script). The following optional factor analysis and mandatory core analyses will run based on user specifications from the previous step:

fa = FactorAnalysis(n_components = factor, max_iter = 3000, rotation = 'varimax')
...
x = fa.transform(x)
...
load = pd.DataFrame(fa.components_.T.round(2), columns = cols, index = feat)
load.to_csv('factor_loadings.csv')
...
vif = pd.Series(variance_inflation_factor(x.values, i) for i in range(x.shape[1]))
vif = pd.DataFrame(np.array(vif.round(2)), columns = ['Variable Inflation Factor'], index = feat)
vif.T.to_csv('variable_inflation_factors.csv')
clf = RandomForestClassifier(n_estimators = 100, criterion = 'gini', max_features = 'auto', bootstrap = True, oob_score = True, class_weight = 'balanced').fit(x, y)
oob = str(round(clf.oob_score_, 2)).ljust(4, '0')
pred = clf.predict_proba(x)
loss = str(round(log_loss(y, pred), 2)).ljust(4, '0')
perf = pd.DataFrame({'Out-of-Bag Score': oob, 'Log Loss': loss}, index = ['Estimate'])
perf.to_csv('model_performance.csv')

Please note, the only current rotation method available in Python for factor analysis is varimax, as far as I know. If another rotation method is preferred, I would opt out of the factor analysis route, or try implementing your own solution from scratch. From these results, the feature importance plot and its respective feature quadrant chart can be graphed and saved automatically to the source folder. This is an especially useful and efficient data visualization tool to help express which variable(s) are most important in predicting your outcome. It also saves you quite a bit of time compared to graphing it yourself!

imp = clf.feature_importances_
sort = np.argsort(imp)
plt.figure()
plt.barh(range(len(sort)), imp[sort], color = 'mediumaquamarine', align = 'center')
plt.title('Feature Importance Plot')
plt.xlabel('Derived Importance →')
...
imps = []
score = []
for i, feat in enumerate(imp[sort]):
  imps.append(round(feat / imp[sort].mean() * 100, 0))
for i, feat in enumerate(mean[sort]):
  score.append(round(feat / mean[sort].mean() * 100, 0))
quad = pd.DataFrame({'Rescaled Observed Score →': score, 'Rescaled Derived Importance →': imps,
  'Feature': x.columns[sort]})

To run the script, I suggest using a batch file located in the source folder as follows:

python driver.py
PAUSE

Although the entire script is not reflected in the above breakdown, this information should prove helpful in getting the user accustomed to what this script aims to achieve. If any additional information and/or explanations are desired, please do not hesitate in reaching out!

📋 Next Steps

Although I feel this project is solid in its current state, I think one area of improvement would fall in the realm of optimizing the script and making it more pythonic. I am also quite interested in hearing feedback from users, including their field of practice, which variables they used for their analyses, and how satisfied they were with this statistical tool overall.

💡 Community Contribution

I am always happy to receive feedback, recommendations, and/or requests from anyone, especially new learners. Please click here for information about the license for this project.

Project Support

Please let me know if you plan to make changes to this project, or adapt the script to a project of your own interest. We can certainly collaborate to make this process as painless as possible!

📚 Additional Resources

  • My current work in market research introduced me to the idea of driver analysis and its usefulness; this statistical tool was created with that space in mind, though it is certainly applicable to all applied areas of business and social science
  • To learn more about calculating random forest classification in Python, click here to access scikit-learn
  • To learn more about calculating factor analysis in Python, click here to access scikit-learn
  • For easy-to-use text editing software, check out Sublime Text for Python and Atom for Markdown
Owner
Thomas
With a passion for research, I am eager to build upon my knowledge of statistical programming. My current areas of focus include data mining and psychometrics.
Thomas
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
MS in Data Science capstone project. Studying attacks on autonomous vehicles.

Surveying Attack Models for CAVs Guide to Installing CARLA and Collecting Data Our project focuses on surveying attack models for Connveced Autonomous

Isabela Caetano 1 Dec 09, 2021
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
Automated Exploration Data Analysis on a financial dataset

Automated EDA on financial dataset Just a simple way to get automated Exploration Data Analysis from financial dataset (OHLCV) using Streamlit and ta.

Darío López Padial 28 Nov 27, 2022
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot.

superSFS This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot. It is easy-to-use and runing fast. What you s

3 Dec 16, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

📈 Statistical Quality Control 📉 This repo contains a simple but effective tool made using python which can be used for quality control in statistica

SasiVatsal 8 Oct 18, 2022
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023