This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

Overview

📈 Statistical Quality Control 📉

This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

What is Statistical Quality Control?

  • statistical quality control is the use of statistical methods in the monitoring and maintaining of the quality of products and services. One method, referred to as acceptance sampling, can be used when a decision must be made to accept or reject a group of parts or items based on the quality found in a sample

  • Statistical quality control can be simply defined as an economic & effective system of maintaining & improving the quality of outputs throughout the whole operating process of specification, production & inspection based on continuous testing with random samples.

Why Statistical Quality Control?, what makes it important?

  • Statistical quality control techniques are extremely important for operating the estimable variations embedded in almost all manufacturing processes. Such variations arise due to raw material, consistency of product elements, processing machines, techniques deployed and packaging applications

  • SQC serves as a medium allowing manufacturers to attain maximum benefits by following controlled testing of manufactured products. Using this procedure, a manufacturing team can investigate the range of products with certain values that can be expected to reside under some existing conditions.

This statistical Quality Control can be easily implemented in python in few lines of code and graph can be beautifully visualized and analysed using matplotlib library.

For example lets consider a real life problem statement given like this:

  • A quality control inspector at the Cocoa Fizz soft drink company has taken ten samples with four observations each of the volume of bottles filled. The data and the computed means are shown in the table, use this information to develop control limits of three standard deviations for the bottling operation.

Data can be taken taken into an excel sheet like this:

After appending the data into excel sheet just hit run, statistical calculation will be done and you're greeted with this two graphs one is X-chat and the other one is R-chart.The x-bar and R-chart are quality control charts used to monitor the mean and variation of a process based on samples taken in a given time.X-bar chart: The mean or average change in process over time from subgroup values. The control limits on the X-Bar brings the sample’s mean and center into consideration.R-chart: The range of the process over the time from subgroups values. This monitors the spread of the process over the time.

Depending upon Data Graphs look like this:

(x-bar control chart)

(r-bar control chart)

From the both X bar and R charts it is clearly evident that the process is almost stable. If by chance the process is unstable that is there are many point in the outer region of quality control you make the process stable by changing the control limits,After the process stabilized, still if any point going out of control limits, it indicates an assignable cause exists in the process that needs to be addressed. This is an ongoing process to monitor the process performance.

Note:

  • Update data in excel before running the script, any number of rown and coloumns can be given.
  • Import used in this project are:
import pandas as pd 
import statistics
from statistics import mean,pstdev
import matplotlib.pyplot as plt
import numpy as np

make sure to install them before hand.

  • Code and logic is xplained in jupyter note book , do check that out
  • If you're interested more on this topic u can refer this PDF

Peace ✌️ .

Owner
SasiVatsal
open source enthusiast.🧑🏼‍💻 Just a teen interest in unix/linux 💻,android📱platforms, intermediate in python, js, c/c++.
SasiVatsal
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Renato 214 Jan 02, 2023
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
bigdata_analyse 大数据分析项目

bigdata_analyse 大数据分析项目 wish 采用不同的技术栈,通过对不同行业的数据集进行分析,期望达到以下目标: 了解不同领域的业务分析指标 深化数据处理、数据分析、数据可视化能力 增加大数据批处理、流处理的实践经验 增加数据挖掘的实践经验

Way 2.4k Dec 30, 2022
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.

Fast Laplacian Eigenmaps in python Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMS

17 Jul 09, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

Lawrence Livermore National Laboratory 14 Aug 19, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Sebastian Schäfer 10 Dec 08, 2022
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021
Jupyter notebooks for the book "The Elements of Statistical Learning".

This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.

Madiyar 369 Dec 30, 2022
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021