This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

Overview

📈 Statistical Quality Control 📉

This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

What is Statistical Quality Control?

  • statistical quality control is the use of statistical methods in the monitoring and maintaining of the quality of products and services. One method, referred to as acceptance sampling, can be used when a decision must be made to accept or reject a group of parts or items based on the quality found in a sample

  • Statistical quality control can be simply defined as an economic & effective system of maintaining & improving the quality of outputs throughout the whole operating process of specification, production & inspection based on continuous testing with random samples.

Why Statistical Quality Control?, what makes it important?

  • Statistical quality control techniques are extremely important for operating the estimable variations embedded in almost all manufacturing processes. Such variations arise due to raw material, consistency of product elements, processing machines, techniques deployed and packaging applications

  • SQC serves as a medium allowing manufacturers to attain maximum benefits by following controlled testing of manufactured products. Using this procedure, a manufacturing team can investigate the range of products with certain values that can be expected to reside under some existing conditions.

This statistical Quality Control can be easily implemented in python in few lines of code and graph can be beautifully visualized and analysed using matplotlib library.

For example lets consider a real life problem statement given like this:

  • A quality control inspector at the Cocoa Fizz soft drink company has taken ten samples with four observations each of the volume of bottles filled. The data and the computed means are shown in the table, use this information to develop control limits of three standard deviations for the bottling operation.

Data can be taken taken into an excel sheet like this:

After appending the data into excel sheet just hit run, statistical calculation will be done and you're greeted with this two graphs one is X-chat and the other one is R-chart.The x-bar and R-chart are quality control charts used to monitor the mean and variation of a process based on samples taken in a given time.X-bar chart: The mean or average change in process over time from subgroup values. The control limits on the X-Bar brings the sample’s mean and center into consideration.R-chart: The range of the process over the time from subgroups values. This monitors the spread of the process over the time.

Depending upon Data Graphs look like this:

(x-bar control chart)

(r-bar control chart)

From the both X bar and R charts it is clearly evident that the process is almost stable. If by chance the process is unstable that is there are many point in the outer region of quality control you make the process stable by changing the control limits,After the process stabilized, still if any point going out of control limits, it indicates an assignable cause exists in the process that needs to be addressed. This is an ongoing process to monitor the process performance.

Note:

  • Update data in excel before running the script, any number of rown and coloumns can be given.
  • Import used in this project are:
import pandas as pd 
import statistics
from statistics import mean,pstdev
import matplotlib.pyplot as plt
import numpy as np

make sure to install them before hand.

  • Code and logic is xplained in jupyter note book , do check that out
  • If you're interested more on this topic u can refer this PDF

Peace ✌️ .

Owner
SasiVatsal
open source enthusiast.🧑🏼‍💻 Just a teen interest in unix/linux 💻,android📱platforms, intermediate in python, js, c/c++.
SasiVatsal
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
General Assembly's 2015 Data Science course in Washington, DC

DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (

Kevin Markham 1.6k Jan 07, 2023
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022
In this tutorial, raster models of soil depth and soil water holding capacity for the United States will be sampled at random geographic coordinates within the state of Colorado.

Raster_Sampling_Demo (Resulting graph of this demo) Background Sampling values of a raster at specific geographic coordinates can be done with a numbe

2 Dec 13, 2022