In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

Overview

ETL Pipeline for AWS

Project Description

In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 to stagging tables on Redshift and SQL queries are written to create analytics tables from staging tables.

Dataset Structure

The dataset is composed of two files the Songs data and Logs data that is present in S3 bucket.

Song Data

The song data is dataset with million of entries. Each file is in JSON format that contains the data about song, artist of that song. Moreover, the files are partitioned by the first three letters of song ID. The single entry of the song dataset looks like

  • {
       "num_songs":1,
       "artist_id":"ARJIE2Y1187B994AB7",
       "artist_latitude":null,
       "artist_longitude":null,
       "artist_location":"",
       "artist_name":"Line Renaud",
       "song_id":"SOUPIRU12A6D4FA1E1",
       "title":"Der Kleine Dompfaff",
       "duration":152.92036,
       "year":0
    }
    

The second dataset consists of log files in JSON format generated by this event simulator based on the songs in the dataset above. These simulate app activity logs from an imaginary music streaming app based on configuration settings.

Logs Data

The logs dataset is also in the JSON formatted, which is formed by the event simulator based on the songs dataset. The logs dataset is the activity logs from the music app.

  • {
        "artist": "Pavement",
        "auth": "Logged in",
        "firstName": "Sylvie",
        "gender": "F",
        "iteminSession": 0,
        "lastName": "Cruz",
        "length": 99.16036,
        "level": "free",
        "location": "Kiamath Falls, OR",
        "method": "PUT",
        "page": "NextSong",
        "registration": 1.540266e+12,
        "sessionId": 345,
        "song": "Mercy: The Laundromat",
        "status": 200,
        "ts": 1541990258796,
        "userAgent": "Mozzilla/5.0...",
        "userId": 10
    }
    

Data Warehouse schema

There are two staging tables: Event table: artist VARCHAR, auth VARCHAR, firstName VARCHAR, gender VARCHAR, itemInSession INT, lastName VARCHAR, length DOUBLE PRECISION, level VARCHAR, location VARCHAR, method VARCHAR , page VARCHAR, registration VARCHAR, sessionid INT, song VARCHAR, status INT, ts VARCHAR, userAgent VARCHAR, userId INT*

Song table* num_songs INTEGER,* artist_id VARCHAR, artist_latitude VARCHAR, artist_longitude VARCHAR, artist_location VARCHAR , artist_name VARCHAR, song_id VARCHAR, title VARCHAR, duration NUMERIC NOT NULL, year integer*

These staging tables helps forming dimension tables and fact tables:

Dimension Tables:
users:
*user_id, first_name, last_name, gender, level*
songs:
*song_id, title, artist_id, year, duration*
artists:
*artist_id, name, location, latitude, longitude*
time:
*start_time, hour, day, week, month, year, weekday*
Fact tables:
Songplays:
*songplay_id, start_time, user_id, level, song_id, artist_id, session_id, location, user_agent*

All the tables contains Primary Key as there should be something unique to identify the rows in the table.

ETL Process

The ETL process is comprises of two steps:

  • Getting data from S3 bucket to staging table
  • Insert the data in dimension and fact table from staging tables using Star Schema

Files Description

- create_tables.py: When create_tables.py run, it will first create tables and drop if table already exists. 
- etl.py: read and process data files
- dwh.cfg: File contains the data warehouse settings for AWS. It contains CLUSTER, IAM_ROLE and S3 settings for the ETL pipeline
- sql_queries: Contains the sql queries for dropping, creation, selection data from tables.
Owner
Mobeen Ahmed
Mobeen Ahmed
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Yap Khai Chuen 7 Dec 15, 2022
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

Nicolai Haaber Junge 1 Oct 20, 2021
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

PokƩmon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
scikit-survival is a Python module for survival analysis built on top of scikit-learn.

scikit-survival scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizi

Sebastian Pƶlsterl 876 Jan 04, 2023
Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
Orchest is a browser based IDE for Data Science.

Orchest is a browser based IDE for Data Science. It integrates your favorite Data Science tools out of the box, so you don’t have to. The application is easy to use and can run on your laptop as well

Orchest 3.6k Jan 09, 2023
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
A simple and efficient tool to parallelize Pandas operations on all availableĀ CPUs

PandaralĀ·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022