ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Overview

Robust Place Recognition using an Imaging Lidar

A place recognition package using high-resolution imaging lidar. For best performance, a lidar equipped with more than 64 uniformly distributed channels is strongly recommended, i.e., Ouster OS1-128 lidar.

drawing


Dependency

  • ROS
  • DBoW3
    cd ~/Downloads/
    git clone https://github.com/rmsalinas/DBow3.git
    cd ~/Downloads/DBow3/
    mkdir build && cd build
    cmake -DCMAKE_BUILD_TYPE=Release ..
    sudo make install
    

Install Package

Use the following commands to download and compile the package.

cd ~/catkin_ws/src
git clone https://github.com/TixiaoShan/imaging_lidar_place_recognition.git
cd ..
catkin_make

Notes

Download

The three datasets used in the paper can be downloaded from from Google Drive. The lidar used for data-gathering is Ouster OS1-128.

https://drive.google.com/drive/folders/1G1kE8oYGKj7EMdjx7muGucXkt78cfKKU?usp=sharing

Point Cloud Format

The author defined a customized point cloud format, PointOuster, in parameters.h. The customized point cloud is projected onto various images in image_handler.h. If you are using your own dataset, please modify these two files to accommodate data format changes.

Visualization logic

In the current implementation, the package subscribes to a path message that is published by a SLAM framework, i.e., LIO-SAM. When a new point cloud arrives, the package associates the point cloud with the latest pose in the path. If a match is detected between two point clouds, an edge marker is plotted between these two poses. The reason why it's implemented in this way is that SLAM methods usually suffer from drift. If a loop-closure is performed, the associated pose of a point cloud also needs to be updated. Thus, this visualization logic can update point clouds using the updated path rather than using TF or odometry that cannot be updated later.

Image Crop

It's recommended to set the image_crop parameter in params.yaml to be 196-256 when testing the indoor and handheld datasets. This is because the operator is right behind the lidar during the data-gathering process. Using features extracted from the operator body may cause unreliable matching. This parameter should be set to 0 when testing the Jackal dataset, which improves the reverse visiting detection performance.


Test Package

  1. Run the launch file:
roslaunch imaging_lidar_place_recognition run.launch
  1. Play existing bag files:
rosbag play indoor_registered.bag -r 3

Paper

Thank you for citing our paper if you use any of this code or datasets.

@inproceedings{robust2021shan,
  title={Robust Place Recognition using an Imaging Lidar},
  author={Shan, Tixiao and Englot, Brendan and Duarte, Fabio and Ratti, Carlo and Rus Daniela},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  pages={to-be-added},
  year={2021},
  organization={IEEE}
}

Acknowledgement

  • The point clouds in the provided datasets are registered using LIO-SAM.
  • The package is heavily adapted from Vins-Mono.
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022