Toward Multimodal Image-to-Image Translation

Overview





BicycleGAN

Project Page | Paper | Video

Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our model is able to synthesize possible day images with different types of lighting, sky and clouds. The training requires paired data.

Note: The current software works well with PyTorch 0.41+. Check out the older branch that supports PyTorch 0.1-0.3.

Toward Multimodal Image-to-Image Translation.
Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A. Efros, Oliver Wang, Eli Shechtman.
UC Berkeley and Adobe Research
In Neural Information Processing Systems, 2017.

Example results

Other Implementations

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:
git clone -b master --single-branch https://github.com/junyanz/BicycleGAN.git
cd BicycleGAN

For pip users:

bash ./scripts/install_pip.sh

For conda users:

bash ./scripts/install_conda.sh

Use a Pre-trained Model

  • Download some test photos (e.g., edges2shoes):
bash ./datasets/download_testset.sh edges2shoes
  • Download a pre-trained model (e.g., edges2shoes):
bash ./pretrained_models/download_model.sh edges2shoes
  • Generate results with the model
bash ./scripts/test_edges2shoes.sh

The test results will be saved to a html file here: ./results/edges2shoes/val/index.html.

  • Generate results with synchronized latent vectors
bash ./scripts/test_edges2shoes.sh --sync

Results can be found at ./results/edges2shoes/val_sync/index.html.

Generate Morphing Videos

  • We can also produce a morphing video similar to this GIF and Youtube video.
bash ./scripts/video_edges2shoes.sh

Results can be found at ./videos/edges2shoes/.

Model Training

  • To train a model, download the training images (e.g., edges2shoes).
bash ./datasets/download_dataset.sh edges2shoes
  • Train a model:
bash ./scripts/train_edges2shoes.sh
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097. To see more intermediate results, check out ./checkpoints/edges2shoes_bicycle_gan/web/index.html
  • See more training details for other datasets in ./scripts/train.sh.

Datasets (from pix2pix)

Download the datasets using the following script. Many of the datasets are collected by other researchers. Please cite their papers if you use the data.

  • Download the testset.
bash ./datasets/download_testset.sh dataset_name
  • Download the training and testset.
bash ./datasets/download_dataset.sh dataset_name

Models

Download the pre-trained models with the following script.

bash ./pretrained_models/download_model.sh model_name
  • edges2shoes (edge -> photo) trained on UT Zappos50K dataset.
  • edges2handbags (edge -> photo) trained on Amazon handbags images..
bash ./pretrained_models/download_model.sh edges2handbags
bash ./datasets/download_testset.sh edges2handbags
bash ./scripts/test_edges2handbags.sh
  • night2day (nighttime scene -> daytime scene) trained on around 100 webcams.
bash ./pretrained_models/download_model.sh night2day
bash ./datasets/download_testset.sh night2day
bash ./scripts/test_night2day.sh
  • facades (facade label -> facade photo) trained on the CMP Facades dataset.
bash ./pretrained_models/download_model.sh facades
bash ./datasets/download_testset.sh facades
bash ./scripts/test_facades.sh
  • maps (map photo -> aerial photo) trained on 1096 training images scraped from Google Maps.
bash ./pretrained_models/download_model.sh maps
bash ./datasets/download_testset.sh maps
bash ./scripts/test_maps.sh

Metrics

Figure 6 shows realism vs diversity of our method.

  • Realism We use the Amazon Mechanical Turk (AMT) Real vs Fake test from this repository, first introduced in this work.

  • Diversity For each input image, we produce 20 translations by randomly sampling 20 z vectors. We compute LPIPS distance between consecutive pairs to get 19 paired distances. You can compute this by putting the 20 images into a directory and using this script (note that we used version 0.0 rather than default 0.1, so use flag -v 0.0). This is done for 100 input images. This results in 1900 total distances (100 images X 19 paired distances each), which are averaged together. A larger number means higher diversity.

Citation

If you find this useful for your research, please use the following.

@inproceedings{zhu2017toward,
  title={Toward multimodal image-to-image translation},
  author={Zhu, Jun-Yan and Zhang, Richard and Pathak, Deepak and Darrell, Trevor and Efros, Alexei A and Wang, Oliver and Shechtman, Eli},
  booktitle={Advances in Neural Information Processing Systems},
  year={2017}
}

If you use modules from CycleGAN or pix2pix paper, please use the following:

@inproceedings{CycleGAN2017,
  title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
  author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle={Computer Vision (ICCV), 2017 IEEE International Conference on},
  year={2017}
}


@inproceedings{isola2017image,
  title={Image-to-Image Translation with Conditional Adversarial Networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on},
  year={2017}
}

Acknowledgements

This code borrows heavily from the pytorch-CycleGAN-and-pix2pix repository.

Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Patches desktop steam to look like the new steamdeck ui.

steam_deck_ui_patch The Deck UI patch will patch the regular desktop steam to look like the brand new SteamDeck UI. This patch tool currently works on

The_IT_Dude 3 Aug 29, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022