Toward Multimodal Image-to-Image Translation

Overview





BicycleGAN

Project Page | Paper | Video

Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our model is able to synthesize possible day images with different types of lighting, sky and clouds. The training requires paired data.

Note: The current software works well with PyTorch 0.41+. Check out the older branch that supports PyTorch 0.1-0.3.

Toward Multimodal Image-to-Image Translation.
Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A. Efros, Oliver Wang, Eli Shechtman.
UC Berkeley and Adobe Research
In Neural Information Processing Systems, 2017.

Example results

Other Implementations

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:
git clone -b master --single-branch https://github.com/junyanz/BicycleGAN.git
cd BicycleGAN

For pip users:

bash ./scripts/install_pip.sh

For conda users:

bash ./scripts/install_conda.sh

Use a Pre-trained Model

  • Download some test photos (e.g., edges2shoes):
bash ./datasets/download_testset.sh edges2shoes
  • Download a pre-trained model (e.g., edges2shoes):
bash ./pretrained_models/download_model.sh edges2shoes
  • Generate results with the model
bash ./scripts/test_edges2shoes.sh

The test results will be saved to a html file here: ./results/edges2shoes/val/index.html.

  • Generate results with synchronized latent vectors
bash ./scripts/test_edges2shoes.sh --sync

Results can be found at ./results/edges2shoes/val_sync/index.html.

Generate Morphing Videos

  • We can also produce a morphing video similar to this GIF and Youtube video.
bash ./scripts/video_edges2shoes.sh

Results can be found at ./videos/edges2shoes/.

Model Training

  • To train a model, download the training images (e.g., edges2shoes).
bash ./datasets/download_dataset.sh edges2shoes
  • Train a model:
bash ./scripts/train_edges2shoes.sh
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097. To see more intermediate results, check out ./checkpoints/edges2shoes_bicycle_gan/web/index.html
  • See more training details for other datasets in ./scripts/train.sh.

Datasets (from pix2pix)

Download the datasets using the following script. Many of the datasets are collected by other researchers. Please cite their papers if you use the data.

  • Download the testset.
bash ./datasets/download_testset.sh dataset_name
  • Download the training and testset.
bash ./datasets/download_dataset.sh dataset_name

Models

Download the pre-trained models with the following script.

bash ./pretrained_models/download_model.sh model_name
  • edges2shoes (edge -> photo) trained on UT Zappos50K dataset.
  • edges2handbags (edge -> photo) trained on Amazon handbags images..
bash ./pretrained_models/download_model.sh edges2handbags
bash ./datasets/download_testset.sh edges2handbags
bash ./scripts/test_edges2handbags.sh
  • night2day (nighttime scene -> daytime scene) trained on around 100 webcams.
bash ./pretrained_models/download_model.sh night2day
bash ./datasets/download_testset.sh night2day
bash ./scripts/test_night2day.sh
  • facades (facade label -> facade photo) trained on the CMP Facades dataset.
bash ./pretrained_models/download_model.sh facades
bash ./datasets/download_testset.sh facades
bash ./scripts/test_facades.sh
  • maps (map photo -> aerial photo) trained on 1096 training images scraped from Google Maps.
bash ./pretrained_models/download_model.sh maps
bash ./datasets/download_testset.sh maps
bash ./scripts/test_maps.sh

Metrics

Figure 6 shows realism vs diversity of our method.

  • Realism We use the Amazon Mechanical Turk (AMT) Real vs Fake test from this repository, first introduced in this work.

  • Diversity For each input image, we produce 20 translations by randomly sampling 20 z vectors. We compute LPIPS distance between consecutive pairs to get 19 paired distances. You can compute this by putting the 20 images into a directory and using this script (note that we used version 0.0 rather than default 0.1, so use flag -v 0.0). This is done for 100 input images. This results in 1900 total distances (100 images X 19 paired distances each), which are averaged together. A larger number means higher diversity.

Citation

If you find this useful for your research, please use the following.

@inproceedings{zhu2017toward,
  title={Toward multimodal image-to-image translation},
  author={Zhu, Jun-Yan and Zhang, Richard and Pathak, Deepak and Darrell, Trevor and Efros, Alexei A and Wang, Oliver and Shechtman, Eli},
  booktitle={Advances in Neural Information Processing Systems},
  year={2017}
}

If you use modules from CycleGAN or pix2pix paper, please use the following:

@inproceedings{CycleGAN2017,
  title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
  author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle={Computer Vision (ICCV), 2017 IEEE International Conference on},
  year={2017}
}


@inproceedings{isola2017image,
  title={Image-to-Image Translation with Conditional Adversarial Networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on},
  year={2017}
}

Acknowledgements

This code borrows heavily from the pytorch-CycleGAN-and-pix2pix repository.

Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022