Laplace Redux -- Effortless Bayesian Deep Learning

Overview

Laplace Redux - Effortless Bayesian Deep Learning

This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Bayesian Deep Learning (NeurIPS 2021), using our library laplace.

Requirements

After cloning the repository and creating a new virtual environment, install the package including all requirements with:

pip install .

For the BBB baseline, please follow the instructions in the corresponding README.

For running the WILDS experiments, please follow the instructions for installing the WILDS library and the required dependencies in the WILDS GitHub repository. Our experiments also require the transformers library (as mentioned in the WILDS GitHub repo under the section Installation/Default models). Our experiments were run and tested with version 1.1.0 of the WILDS library.

Uncertainty Quantification Experiments (Sections 4.2 and 4.3)

The script uq.py runs the distribution shift (rotated (F)MNIST, corrupted CIFAR-10) and OOD ((F)MNIST and CIFAR-10 as in-distribution) experiments reported in Section 4.2, as well as the experiments on the WILDS benchmark reported in Section 4.3. It expects pre-trained models, which can be downloaded here; they should be placed in the models directory. Due to the large filesize the SWAG models are not included. Please contact us if you are interested in obtaining them.

To more conveniently run the experiments with the same parameters as we used in the paper, we provide some dedicated config files for the results with the Laplace approximation ({x/y} highlights options x and y); note that you might want to change the download flag or the data_root in the config file:

python uq.py --benchmark {R-MNIST/MNIST-OOD} --config configs/post_hoc_laplace/mnist_{default/bestood}.yaml
python uq.py --benchmark {CIFAR-10-C/CIFAR-10-OOD} --config configs/post_hoc_laplace/cifar10_{default/bestood}.yaml

The config files with *_default contains the default library setting of the Laplace approximation (LA in the paper) and *_bestood the setting which performs best on OOD data (LA* in the paper).

For running the baselines, take a look at the commands in run_uq_baslines.sh.

Continual Learning Experiments (Section 4.4)

Run

python continual_learning.py

to reproduce the LA-KFAC result and run

python continual_learning.py --hessian_structure diag

to reproduce the LA-DIAG result of the continual learning experiment in Section 4.4.

Training Baselines

In order to train the baselines, please note the following:

  • Symlink your dataset dir to your ~/Datasets, e.g. ln -s /your/dataset/dir ~/Datasets.
  • Always run the training scripts from the project's root directory, e.g. python baselines/bbb/train.py.
Owner
Runa Eschenhagen
Runa Eschenhagen
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
wlad 2 Dec 19, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022