Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

Related tags

Deep LearningUNO
Overview

A Unified Objective for Novel Class Discovery

This is the official repository for the paper:

A Unified Objective for Novel Class Discovery
Enrico Fini, Enver Sangineto Stéphane Lathuilière, Zhun Zhong Moin Nabi, Elisa Ricci
ICCV 2021 (Oral)

Paper: ArXiv
Project Page: Website

Abstract: In this paper, we study the problem of Novel Class Discovery (NCD). NCD aims at inferring novel object categories in an unlabeled set by leveraging from prior knowledge of a labeled set containing different, but related classes. Existing approaches tackle this problem by considering multiple objective functions, usually involving specialized loss terms for the labeled and the unlabeled samples respectively, and often requiring auxiliary regularization terms. In this paper we depart from this traditional scheme and introduce a UNified Objective function (UNO) for discovering novel classes, with the explicit purpose of favoring synergy between supervised and unsupervised learning. Using a multi-view self-labeling strategy, we generate pseudo-labels that can be treated homogeneously with ground truth labels. This leads to a single classification objective operating on both known and unknown classes. Despite its simplicity, UNO outperforms the state of the art by a significant margin on several benchmarks (+10% on CIFAR-100 and +8% on ImageNet).



A visual comparison of our UNified Objective (UNO) with previous works.



Overview of the proposed architecture.


Installation

Our implementation is based on PyTorch and PyTorch Lightning. Logging is performed using Wandb. We recommend using conda to create the environment and install dependencies:

conda create --name uno python=3.8
conda activate uno
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=XX.X -c pytorch
pip install pytorch-lightning==1.1.3 lightning-bolts==0.3.0 wandb sklearn
mkdir -p logs/wandb checkpoints

Select the appropriate cudatoolkit version according to your system. Optionally, you can also replace pillow with pillow-simd (if your machine supports it) for faster data loading:

pip uninstall pillow
CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

Datasets

For CIFAR10 and CIFAR100 you can just pass --download and the datasets will be automatically downloaded in the directory specified with --data_dir YOUR_DATA_DIR. For ImageNet you will need to follow the instructions on this website.

Checkpoints

All checkpoints (after the pretraining phase) are available on Google Drive. We recommend using gdown to download them directly to your server. First, install gdown with the following command:

pip install gdown

Then, open the Google Drive folder, choose the checkpoint you want to download, do right click and select Get link > Copy link. For instance, for CIFAR10 the link will look something like this:

https://drive.google.com/file/d/1Pa3qgHwK_1JkA-k492gAjWPM5AW76-rl/view?usp=sharing

Now, remove /view?usp=sharing and replace file/d/ with uc?id=. Finally, download the checkpoint running the following command:

gdown https://drive.google.com/uc?id=1Pa3qgHwK_1JkA-k492gAjWPM5AW76-rl

Logging

Logging is performed with Wandb. Please create an account and specify your --entity YOUR_ENTITY and --project YOUR_PROJECT. For debugging, or if you do not want all the perks of Wandb, you can disable logging by passing --offline.

Commands

Pretraining

Running pretraining on CIFAR10 (5 labeled classes):

python main_pretrain.py --dataset CIFAR10 --gpus 1  --precision 16 --max_epochs 200 --batch_size 256 --num_labeled_classes 5 --num_unlabeled_classes 5 --comment 5_5

Running pretraining on CIFAR100-80 (80 labeled classes):

python main_pretrain.py --dataset CIFAR100 --gpus 1 --precision 16 --max_epochs 200 --batch_size 256 --num_labeled_classes 80 --num_unlabeled_classes 20 --comment 80_20

Running pretraining on CIFAR100-50 (50 labeled classes):

python main_pretrain.py --dataset CIFAR100 --gpus 1 --precision 16 --max_epochs 200 --batch_size 256 --num_labeled_classes 50 --num_unlabeled_classes 50 --comment 50_50

Running pretraining on ImageNet (882 labeled classes):

python main_pretrain.py --gpus 2 --num_workers 8 --distributed_backend ddp --sync_batchnorm --precision 16 --dataset ImageNet --data_dir PATH/TO/IMAGENET --max_epochs 100 --warmup_epochs 5 --batch_size 256 --num_labeled_classes 882 --num_unlabeled_classes 30 --comment 882_30

Discovery

Running discovery on CIFAR10 (5 labeled classes, 5 unlabeled classes):

python main_discover.py --dataset CIFAR10 --gpus 1 --precision 16 --max_epochs 200 --batch_size 256 --num_labeled_classes 5 --num_unlabeled_classes 5 --pretrained PATH/TO/CHECKPOINTS/pretrain-resnet18-CIFAR10.cp --num_heads 4 --comment 5_5

Running discovery on CIFAR100-20 (80 labeled classes, 20 unlabeled classes):

python main_discover.py --dataset CIFAR100 --gpus 1 --max_epochs 200 --batch_size 256 --num_labeled_classes 80 --num_unlabeled_classes 20 --pretrained PATH/TO/CHECKPOINTS/pretrain-resnet18-CIFAR100-80_20.cp --num_heads 4 --comment 80_20 --precision 16

Running discovery on CIFAR100-50 (50 labeled classes, 50 unlabeled classes):

python main_discover.py --dataset CIFAR100 --gpus 1 --max_epochs 200 --batch_size 256 --num_labeled_classes 50 --num_unlabeled_classes 50 --pretrained PATH/TO/CHECKPOINTS/pretrain-resnet18-CIFAR100-50_50.cp --num_heads 4 --comment 50_50 --precision 16

Running discovery on ImageNet (882 labeled classes, 30 unlabeled classes)

python main_discover.py --dataset ImageNet --gpus 2 --num_workers 8 --distributed_backend ddp --sync_batchnorm --precision 16  --data_dir PATH/TO/IMAGENET --max_epochs 60 --base_lr 0.02 --warmup_epochs 5 --batch_size 256 --num_labeled_classes 882 --num_unlabeled_classes 30 --num_heads 3 --pretrained PATH/TO/CHECKPOINTS/pretrain-resnet18-ImageNet.cp --imagenet_split A --comment 882_30-A

NOTE: to run ImageNet split B/C just pass --imagenet_split B/C.

Citation

If you like our work, please cite our paper:

@InProceedings{fini2021unified,
    author    = {Fini, Enrico and Sangineto, Enver and Lathuilière, Stéphane and Zhong, Zhun and Nabi, Moin and Ricci, Elisa},
    title     = {A Unified Objective for Novel Class Discovery},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year      = {2021}
}
Owner
Enrico Fini
PhD Student at University of Trento
Enrico Fini
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022