An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

Related tags

Deep LearningRASP
Overview

RASP

Setup

Mac or Linux

Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to install graphviz (the non-python part) and rlwrap on your machine. If these fail, you will still be able to use RASP, however: the interface will not be as nice without rlwrap, and drawing s-op computation flows will not be possible without graphviz. After having set up, you can run ./rasp.sh to start the RASP read-evaluate-print-loop.

Windows

Follow the instructions given in windows instructions.txt

The REPL

After having set up, if you are in mac/linux, you can run ./rasp.sh to start the RASP REPL. Otherwise, run python3 RASP_support/REPL.py Use Ctrl+C to quit a partially entered command, and Ctrl+D to exit the REPL.

Initial Environment

RASP starts with the base s-ops: tokens, indices, and length. It also has the base functions select, aggregate, and selector_width as described in the paper, a selector full_s created through select(1,1,==) that creates a "full" attention pattern, and several other library functions (check out RASP_support/rasplib.rasp to see them).

Additionally, the REPL begins with a base example, "hello", on which it shows the output for each created s-op or selector. This example can be changed, and toggled on and off, through commands to the REPL.

All RASP commands end with a semicolon. Commands to the REPL -- such as changing the base example -- do not.

Start by following along with the examples -- they are kept at the bottom of this readme.

Note on input types:

RASP expects inputs in four forms: strings, integers, floats, or booleans, handled respectively by tokens_str, tokens_int, tokens_float, and tokens_bool. Initially, RASP loads with tokens set to tokens_str, this can be changed by assignment, e.g.: tokens=tokens_int;. When changing the input type, you will also want to change the base example, e.g.: set example [0,1,2].

Note that assignments do not retroactively change the computation trees of existing s-ops!

Writing and Loading RASP files

To keep and load RASP code from files, save them with .rasp as the extension, and use the 'load' command without the extension. For example, you can load the examples file paper_examples.rasp in this repository to the REPL as follows:

>> load "paper_examples";

This will make (almost) all values in the file available in the loading environment (whether the REPL, or a different .rasp file): values whose names begin with an underscore remain private to the file they are written in. Loading files in the REPL will also print a list of all loaded values.

Syntax Highlighting

For the Sublime Text editor, you can get syntax highlighting for .rasp files as follows:

  1. Install package control for sublime (you might already have it: look in the menu [Sublime Text]->[Preferences] and see if it's there. If not, follow the instructions at https://packagecontrol.io/installation).
  2. Install the 'packagedev' package through package control ([Sublime Text]->[Preferences]->[Package Control], then type [install package], then [packagedev])
  3. After installing PackageDev, create a new syntax definition file through [Tools]->[Packages]->[Package Development]->[New Syntax Definition].
  4. Copy the contents of RASP_support/RASP.sublime-syntax into the new syntax definition file, and save it as RASP.sublime-syntax.

[Above is basically following the instructions in http://ilkinulas.github.io/programming/2016/02/05/sublime-text-syntax-highlighting.html , and then copying in the contents of the provided RASP.sublime-syntax file]

Examples

Play around in the REPL!

Try simple elementwise manipulations of s-ops:

>>  threexindices =3 * indices;
     s-op: threexindices
 	 Example: threexindices("hello") = [0, 3, 6, 9, 12] (ints)
>> indices+indices;
     s-op: out
 	 Example: out("hello") = [0, 2, 4, 6, 8] (ints)

Change the base example, and create a selector that focuses each position on all positions before it:

>> set example "hey"
>> prevs=select(indices,indices,<);
     selector: prevs
 	 Example:
 			     h e y
 			 h |      
 			 e | 1    
 			 y | 1 1  

Check the output of an s-op on your new base example:

>> threexindices;
     s-op: threexindices
 	 Example: threexindices("hey") = [0, 3, 6] (ints)

Or on specific inputs:

>> threexindices(["hi","there"]);
	 =  [0, 3] (ints)
>> threexindices("hiya");
	 =  [0, 3, 6, 9] (ints)

Aggregate with the full selection pattern (loaded automatically with the REPL) to compute the proportion of a letter in your input:

>> full_s;
     selector: full_s
 	 Example:
 			     h e y
 			 h | 1 1 1
 			 e | 1 1 1
 			 y | 1 1 1
>> my_frac=aggregate(full_s,indicator(tokens=="e"));
     s-op: my_frac
 	 Example: my_frac("hey") = [0.333]*3 (floats)

Note: when an s-op's output is identical in all positions, RASP simply prints the output of one position, followed by " * X" (where X is the sequence length) to mark the repetition.

Check if a letter is in your input at all:

>> "e" in tokens;
     s-op: out
 	 Example: out("hey") = [T]*3 (bools)

Alternately, in an elementwise fashion, check if each of your input tokens belongs to some group:

>> vowels = ["a","e","i","o","u"];
     list: vowels = ['a', 'e', 'i', 'o', 'u']
>> tokens in vowels;
     s-op: out
 	 Example: out("hey") = [F, T, F] (bools)

Draw the computation flow for an s-op you have created, on an input of your choice: (this will create a pdf in a subfolder comp_flows of the current directory)

>> draw(my_frac,"abcdeeee");
	 =  [0.5]*8 (floats)

Or simply on the base example:

>> draw(my_frac);
	 =  [0.333]*3 (floats)

If they bother you, turn the examples off, and bring them back when you need them:

>> examples off
>> indices;
     s-op: indices
>> full_s;
     selector: full_s
>> examples on
>> indices;
     s-op: indices
 	 Example: indices("hey") = [0, 1, 2] (ints)

You can also do this selectively, turning only selector or s-op examples on and off, e.g.: selector examples off.

Create a selector that focuses each position on all other positions containing the same token. But first, set the base example to "hello" for a better idea of what's happening:

>> set example "hello"
>> same_token=select(tokens,tokens,==);
     selector: same_token
 	 Example:
 			     h e l l o
 			 h | 1        
 			 e |   1      
 			 l |     1 1  
 			 l |     1 1  
 			 o |         1

Then, use selector_width to compute, for each position, how many other positions the selector same_token focuses it on. This effectively computes an in-place histogram over the input:

>> histogram=selector_width(same_token);
     s-op: histogram
 	 Example: histogram("hello") = [1, 1, 2, 2, 1] (ints)

For more complicated examples, check out paper_examples.rasp!

Experiments on Transformers

The transformers in the paper were trained, and their attention heatmaps visualised, using the code in this repository: https://github.com/tech-srl/RASP-exps

LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022