A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

Overview

spaCyOpenTapioca

A spaCy wrapper of OpenTapioca for named entity linking on Wikidata.

Table of contents

Installation

pip install spacyopentapioca

or

git clone https://github.com/UB-Mannheim/spacyopentapioca
cd spacyopentapioca/
pip install .

How to use

After installation the OpenTapioca pipeline can be used without any other pipelines:

import spacy
nlp = spacy.blank("en")
nlp.add_pipe('opentapioca')
doc = nlp("Christian Drosten works in Germany.")
for span in doc.ents:
    print((span.text, span.kb_id_, span.label_, span._.description, span._.score))
('Christian Drosten', 'Q1079331', 'PERSON', 'German virologist and university teacher', 3.6533377082098895)
('Germany', 'Q183', 'LOC', 'sovereign state in Central Europe', 2.1099332471902863)

The types and aliases are also available:

for span in doc.ents:
    print((span._.types, span._.aliases[0:5]))
({'Q43229': False, 'Q618123': False, 'Q5': True, 'P2427': False, 'P1566': False, 'P496': True}, ['كريستيان دروستين', 'Крістіан Дростен', 'Christian Heinrich Maria Drosten', 'کریستین دروستن', '크리스티안 드로스텐'])
({'Q43229': True, 'Q618123': True, 'Q5': False, 'P2427': False, 'P1566': True, 'P496': False}, ['IJalimani', 'R. F. A.', 'Alemania', '도이칠란트', 'Germaniya'])

The Wikidata QIDs are attached to tokens:

for token in doc:
    print((token.text, token.ent_kb_id_))
('Christian', 'Q1079331')
('Drosten', 'Q1079331')
('works', '')
('in', '')
('Germany', 'Q183')
('.', '')

The raw response of the OpenTapioca API can be accessed in the doc- and span-objects:

raw_annotations1 = doc._.annotations
raw_annotations2 = [span._.annotations for span in doc.ents]

The partial metadata for the response returned by the OpenTapioca API is

doc._.metadata

All span-extensions are:

span._.annotations
span._.description
span._.aliases
span._.rank
span._.score
span._.types
span._.label
span._.extra_aliases
span._.nb_sitelinks
span._.nb_statements

Note that spaCyOpenTapioca does a tiny processing of entities appearing in doc.ents. All entities returned by OpenTapioca can be found in doc.spans['all_entities_opentapioca'].

Local OpenTapioca

If OpenTapioca is deployed locally, specify the URL of the new OpenTapioca API in the config:

import spacy
nlp = spacy.blank("en")
nlp.add_pipe('opentapioca', config={"url": OpenTapiocaAPI})
doc = nlp("Christian Drosten works in Germany.")

Vizualization

NER vizualization in spaCy via displaCy cannot show yet the links to entities. This can be added into spaCy as proposed in issue 9129.

Comments
  • AttributeError: 'NoneType' object has no attribute 'text' when using nlp.pipe()

    AttributeError: 'NoneType' object has no attribute 'text' when using nlp.pipe()

    Hi, when I process multiple text documents as a batch, I have failure with the error message: AttributeError: 'NoneType' object has no attribute 'text'. However, processing each text document by itself produces no such error. Here is a easy to reproduce example:

    docs = ["""String of 126 characters. String of 126 characters. String of 126 characters. String of 126 characters. String of 126 characte""","""Any string which is 93 characters. Any string which is 93 characters. Any string which is 93 """]
    nlp = spacy.blank("en")
    nlp.add_pipe("opentapioca")
    for doc in nlp.pipe(docs):
        print(doc)
    

    Fulll stack trace below:

    AttributeError                            Traceback (most recent call last)
    <command-370658210397732> in <module>
          4 nlp = spacy.blank("en")
          5 nlp.add_pipe("opentapioca")
    ----> 6 for doc in nlp.pipe(docs):
          7     print(doc)
    
    /databricks/python/lib/python3.8/site-packages/spacy/language.py in pipe(self, texts, as_tuples, batch_size, disable, component_cfg, n_process)
       1570         else:
       1571             # if n_process == 1, no processes are forked.
    -> 1572             docs = (self._ensure_doc(text) for text in texts)
       1573             for pipe in pipes:
       1574                 docs = pipe(docs)
    
    /databricks/python/lib/python3.8/site-packages/spacy/util.py in _pipe(docs, proc, name, default_error_handler, kwargs)
       1597     if hasattr(proc, "pipe"):
       1598         yield from proc.pipe(docs, **kwargs)
    -> 1599     else:
       1600         # We added some args for pipe that __call__ doesn't expect.
       1601         kwargs = dict(kwargs)
    
    /databricks/python/lib/python3.8/site-packages/spacyopentapioca/entity_linker.py in pipe(self, stream, batch_size)
        117                     self.make_request, doc): doc for doc in docs}
        118                 for doc, future in zip(docs, concurrent.futures.as_completed(future_to_url)):
    --> 119                     yield self.process_single_doc_after_call(doc, future.result())
    
    /databricks/python/lib/python3.8/site-packages/spacyopentapioca/entity_linker.py in process_single_doc_after_call(self, doc, r)
         66                                      alignment_mode='expand')
         67                 log.warning('The OpenTapioca-entity "%s" %s does not fit the span "%s" %s in spaCy. EXPANDED!',
    ---> 68                             ent['tags'][0]['label'][0], (start, end), span.text, (span.start_char, span.end_char))
         69             span._.annotations = ent
         70             span._.description = ent['tags'][0]['desc']
    
    AttributeError: 'NoneType' object has no attribute 'text'
    

    I don't know what about the lengths of the strings causes an issue, but they do seem to matter in some way. Adding or removing a couple characters from either string can resolve the issue.

    opened by coltonpeltier-db 6
  • Add methods to highlights

    Add methods to highlights

    In the same way by clicking a NER highlighting leads to a web side it would perhaps be possible to extend this functionality and pass a method to be run when clicking the highlighted NER.

    opened by joseberlines 4
  • Add CodeQL workflow for GitHub code scanning

    Add CodeQL workflow for GitHub code scanning

    Hi UB-Mannheim/spacyopentapioca!

    This is a one-off automatically generated pull request from LGTM.com :robot:. You might have heard that we’ve integrated LGTM’s underlying CodeQL analysis engine natively into GitHub. The result is GitHub code scanning!

    With LGTM fully integrated into code scanning, we are focused on improving CodeQL within the native GitHub code scanning experience. In order to take advantage of current and future improvements to our analysis capabilities, we suggest you enable code scanning on your repository. Please take a look at our blog post for more information.

    This pull request enables code scanning by adding an auto-generated codeql.yml workflow file for GitHub Actions to your repository — take a look! We tested it before opening this pull request, so all should be working :heavy_check_mark:. In fact, you might already have seen some alerts appear on this pull request!

    Where needed and if possible, we’ve adjusted the configuration to the needs of your particular repository. But of course, you should feel free to tweak it further! Check this page for detailed documentation.

    Questions? Check out the FAQ below!

    FAQ

    Click here to expand the FAQ section

    How often will the code scanning analysis run?

    By default, code scanning will trigger a scan with the CodeQL engine on the following events:

    • On every pull request — to flag up potential security problems for you to investigate before merging a PR.
    • On every push to your default branch and other protected branches — this keeps the analysis results on your repository’s Security tab up to date.
    • Once a week at a fixed time — to make sure you benefit from the latest updated security analysis even when no code was committed or PRs were opened.

    What will this cost?

    Nothing! The CodeQL engine will run inside GitHub Actions, making use of your unlimited free compute minutes for public repositories.

    What types of problems does CodeQL find?

    The CodeQL engine that powers GitHub code scanning is the exact same engine that powers LGTM.com. The exact set of rules has been tweaked slightly, but you should see almost exactly the same types of alerts as you were used to on LGTM.com: we’ve enabled the security-and-quality query suite for you.

    How do I upgrade my CodeQL engine?

    No need! New versions of the CodeQL analysis are constantly deployed on GitHub.com; your repository will automatically benefit from the most recently released version.

    The analysis doesn’t seem to be working

    If you get an error in GitHub Actions that indicates that CodeQL wasn’t able to analyze your code, please follow the instructions here to debug the analysis.

    How do I disable LGTM.com?

    If you have LGTM’s automatic pull request analysis enabled, then you can follow these steps to disable the LGTM pull request analysis. You don’t actually need to remove your repository from LGTM.com; it will automatically be removed in the next few months as part of the deprecation of LGTM.com (more info here).

    Which source code hosting platforms does code scanning support?

    GitHub code scanning is deeply integrated within GitHub itself. If you’d like to scan source code that is hosted elsewhere, we suggest that you create a mirror of that code on GitHub.

    How do I know this PR is legitimate?

    This PR is filed by the official LGTM.com GitHub App, in line with the deprecation timeline that was announced on the official GitHub Blog. The proposed GitHub Action workflow uses the official open source GitHub CodeQL Action. If you have any other questions or concerns, please join the discussion here in the official GitHub community!

    I have another question / how do I get in touch?

    Please join the discussion here to ask further questions and send us suggestions!

    opened by lgtm-com[bot] 1
  • 'ent_kb_id' referenced before assignment

    'ent_kb_id' referenced before assignment

    Hello, while trying this example : nlp("M. Knajdek"), An error occurs in the entity_linker.py file UnboundLocalError: local variable 'ent_kb_id' referenced before assignment on line 67 in the file. This is due to the . separator.

    opened by TheNizzo 1
  • Added logging & Fixed Reference Error

    Added logging & Fixed Reference Error

    Added logger to allow user to suppress logs coming from spacyopentapioca.

    Fixed thelocal variable 'etype' referenced before assignment error at line 65.

    opened by jordanparker6 1
Releases(v.0.1.6)
Owner
Universitätsbibliothek Mannheim
Mannheim University Library
Universitätsbibliothek Mannheim
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
Abhijith Neil Abraham 2 Nov 05, 2021
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022
Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

NLP Boot Camp (Jan) Synopsis Full Name: Prameya Mohanty Name of your School: Delhi Public School, Rourkela Class: VIII Title of the Project: iTransect

TheCodingHub 1 Feb 01, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022