[ICCV2021] Learning to Track Objects from Unlabeled Videos

Related tags

Deep LearningUSOT
Overview

Unsupervised Single Object Tracking (USOT)

🌿 Learning to Track Objects from Unlabeled Videos

Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang

2021 IEEE/CVF International Conference on Computer Vision (ICCV)

Introduction

This repository implements unsupervised deep tracker USOT, which learns to track objects from unlabeled videos.

Main ideas of USOT are listed as follows.

  • Coarsely discovering moving objects from videos, with pseudo boxes precise enough for bbox regression.
  • Training a naive Siamese tracker from single-frame pairs, then gradually extending it to longer temporal spans.
  • Following cycle memory training paradigm, enabling unsupervised tracker to update online.

Results

Results of USOT and USOT* on recent tracking benchmarks.

Model VOT2016
EAO
VOT2018
EAO
VOT2020
EAO
LaSOT
AUC (%)
TrackingNet
AUC (%)
OTB100
AUC (%)
USOT 0.351 0.290 0.222 33.7 59.9 58.9
USOT* 0.402 0.344 0.219 35.8 61.5 57.4

Raw result files can be found in folder result from Google Drive.

Tutorial

Environments

The environment we utilize is listed as follows.

  • Preprocessing: Pytorch 1.1.0 + CUDA-9.0 / 10.0 (following ARFlow)
  • Train / Test / Eval: Pytorch 1.7.1 + CUDA-10.0 / 10.2 / 11.1

If you have problems for preprocessing, you can actually skip it by downloading off-the-shelf preprocessed materials.

Preparations

Assume the project root path is $USOT_PATH. You can build an environment for development with the provided script, where $CONDA_PATH denotes your anaconda path.

cd $USOT_PATH
bash ./preprocessing/install_model.sh $CONDA_PATH USOT
source activate USOT && export PYTHONPATH=$(pwd)

You can revise the CUDA toolkit version for pytorch in install_model.sh (by default 10.0).

Test and Eval

First, we provide both models utilized in our paper (USOT.pth and USOT_star.pth). You can download them in folder snapshot from Google Drive, and place them in $USOT_PATH/var/snapshot.

Next, you can link your wanted benchmark dataset (e.g. VOT2018) to $USOT_PATH/datasets_test as follows. The ground truth json files for some benchmarks (e.g VOT2018.json) can be downloaded in folder test from Google Drive, and placed also in $USOT_PATH/datasets_test.

cd $USOT_PATH && mkdir datasets_test
ln -s $your_benchmark_path ./datasets_test/VOT2018

After that, you can test the tracker on these benchmarks (e.g. VOT2018) as follows. The raw results will be placed in $USOT_PATH/var/result/VOT2018/USOT.

cd $USOT_PATH
python -u ./scripts/test_usot.py --dataset VOT2018 --resume ./var/snapshot/USOT_star.pth

The inference result can be evaluated with pysot-toolkit. Install pysot-toolkit before evaluation.

cd $USOT_PATH/lib/eval_toolkit/pysot/utils
python setup.py build_ext --inplace

Then the evaluation can be conducted as follows.

cd $USOT_PATH
python ./lib/eval_toolkit/bin/eval.py --dataset_dir datasets_test \
        --dataset VOT2018 --tracker_result_dir var/result/VOT2018 --trackers USOT

Train

First, download the pretrained backbone in folder pretrain from Google Drive into $USOT_PATH/pretrain. Note that USOT* and USOT are respectively trained from imagenet_pretrain.model and moco_v2_800.model.

Second, preprocess the raw datasets with the paradigm of DP + Flow. Refer to $USOT_PATH/preprocessing/datasets_train for details.

In fact, we have provided two shortcuts for skipping this preprocessing procedure.

  • You can directly download the generated pseudo box files (e.g. got10k_flow.json) in folder train/box_sample_result from Google Drive, and place them into the corresponding dataset preprocessing path (e.g. $USOT_PATH/preprocessing/datasets_train/got10k), in order to skip the box generation procedure.
  • You can directly download the whole cropped training dataset (e.g. got10k_flow.tar) in dataset folder from Google Drive (Coming soon) (e.g. train/GOT-10k), which enables you to skip all procedures in preprocessing.

Third, revise the config file for training as $USOT_PATH/experiments/train/USOT.yaml. Very important options are listed as follows.

  • GPUS: the gpus for training, e.g. '0,1,2,3'
  • TRAIN/PRETRAIN: the pretrained backbone, e.g. 'imagenet_pretrain.model'
  • DATASET: the folder for your cropped training instances and their pseudo annotation files, e.g. PATH: '/data/got10k_flow/crop511/', ANNOTATION: '/data/got10k_flow/train.json'

Finally, you can start the training phase with the following script. The training checkpoints will also be placed automatically in $USOT_PATH/var/snapshot.

cd $USOT_PATH
python -u ./scripts/train_usot.py --cfg experiments/train/USOT.yaml --gpus 0,1,2,3 --workers 32

We also provide a onekey script for train, test and eval.

cd $USOT_PATH
python ./scripts/onekey_usot.py --cfg experiments/train/USOT.yaml

Citation

If any parts of our paper and codes are helpful to your work, please generously citing:

@inproceedings{zheng-iccv2021-usot,
   title={Learning to Track Objects from Unlabeled Videos},
   author={Jilai Zheng and Chao Ma and Houwen Peng and Xiaokang Yang},
   booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
   year={2021}
}

Reference

We refer to the following repositories when implementing our unsupervised tracker. Thanks for their great work.

Contact

Feel free to contact me if you have any questions.

Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022