[ICCV2021] Learning to Track Objects from Unlabeled Videos

Related tags

Deep LearningUSOT
Overview

Unsupervised Single Object Tracking (USOT)

🌿 Learning to Track Objects from Unlabeled Videos

Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang

2021 IEEE/CVF International Conference on Computer Vision (ICCV)

Introduction

This repository implements unsupervised deep tracker USOT, which learns to track objects from unlabeled videos.

Main ideas of USOT are listed as follows.

  • Coarsely discovering moving objects from videos, with pseudo boxes precise enough for bbox regression.
  • Training a naive Siamese tracker from single-frame pairs, then gradually extending it to longer temporal spans.
  • Following cycle memory training paradigm, enabling unsupervised tracker to update online.

Results

Results of USOT and USOT* on recent tracking benchmarks.

Model VOT2016
EAO
VOT2018
EAO
VOT2020
EAO
LaSOT
AUC (%)
TrackingNet
AUC (%)
OTB100
AUC (%)
USOT 0.351 0.290 0.222 33.7 59.9 58.9
USOT* 0.402 0.344 0.219 35.8 61.5 57.4

Raw result files can be found in folder result from Google Drive.

Tutorial

Environments

The environment we utilize is listed as follows.

  • Preprocessing: Pytorch 1.1.0 + CUDA-9.0 / 10.0 (following ARFlow)
  • Train / Test / Eval: Pytorch 1.7.1 + CUDA-10.0 / 10.2 / 11.1

If you have problems for preprocessing, you can actually skip it by downloading off-the-shelf preprocessed materials.

Preparations

Assume the project root path is $USOT_PATH. You can build an environment for development with the provided script, where $CONDA_PATH denotes your anaconda path.

cd $USOT_PATH
bash ./preprocessing/install_model.sh $CONDA_PATH USOT
source activate USOT && export PYTHONPATH=$(pwd)

You can revise the CUDA toolkit version for pytorch in install_model.sh (by default 10.0).

Test and Eval

First, we provide both models utilized in our paper (USOT.pth and USOT_star.pth). You can download them in folder snapshot from Google Drive, and place them in $USOT_PATH/var/snapshot.

Next, you can link your wanted benchmark dataset (e.g. VOT2018) to $USOT_PATH/datasets_test as follows. The ground truth json files for some benchmarks (e.g VOT2018.json) can be downloaded in folder test from Google Drive, and placed also in $USOT_PATH/datasets_test.

cd $USOT_PATH && mkdir datasets_test
ln -s $your_benchmark_path ./datasets_test/VOT2018

After that, you can test the tracker on these benchmarks (e.g. VOT2018) as follows. The raw results will be placed in $USOT_PATH/var/result/VOT2018/USOT.

cd $USOT_PATH
python -u ./scripts/test_usot.py --dataset VOT2018 --resume ./var/snapshot/USOT_star.pth

The inference result can be evaluated with pysot-toolkit. Install pysot-toolkit before evaluation.

cd $USOT_PATH/lib/eval_toolkit/pysot/utils
python setup.py build_ext --inplace

Then the evaluation can be conducted as follows.

cd $USOT_PATH
python ./lib/eval_toolkit/bin/eval.py --dataset_dir datasets_test \
        --dataset VOT2018 --tracker_result_dir var/result/VOT2018 --trackers USOT

Train

First, download the pretrained backbone in folder pretrain from Google Drive into $USOT_PATH/pretrain. Note that USOT* and USOT are respectively trained from imagenet_pretrain.model and moco_v2_800.model.

Second, preprocess the raw datasets with the paradigm of DP + Flow. Refer to $USOT_PATH/preprocessing/datasets_train for details.

In fact, we have provided two shortcuts for skipping this preprocessing procedure.

  • You can directly download the generated pseudo box files (e.g. got10k_flow.json) in folder train/box_sample_result from Google Drive, and place them into the corresponding dataset preprocessing path (e.g. $USOT_PATH/preprocessing/datasets_train/got10k), in order to skip the box generation procedure.
  • You can directly download the whole cropped training dataset (e.g. got10k_flow.tar) in dataset folder from Google Drive (Coming soon) (e.g. train/GOT-10k), which enables you to skip all procedures in preprocessing.

Third, revise the config file for training as $USOT_PATH/experiments/train/USOT.yaml. Very important options are listed as follows.

  • GPUS: the gpus for training, e.g. '0,1,2,3'
  • TRAIN/PRETRAIN: the pretrained backbone, e.g. 'imagenet_pretrain.model'
  • DATASET: the folder for your cropped training instances and their pseudo annotation files, e.g. PATH: '/data/got10k_flow/crop511/', ANNOTATION: '/data/got10k_flow/train.json'

Finally, you can start the training phase with the following script. The training checkpoints will also be placed automatically in $USOT_PATH/var/snapshot.

cd $USOT_PATH
python -u ./scripts/train_usot.py --cfg experiments/train/USOT.yaml --gpus 0,1,2,3 --workers 32

We also provide a onekey script for train, test and eval.

cd $USOT_PATH
python ./scripts/onekey_usot.py --cfg experiments/train/USOT.yaml

Citation

If any parts of our paper and codes are helpful to your work, please generously citing:

@inproceedings{zheng-iccv2021-usot,
   title={Learning to Track Objects from Unlabeled Videos},
   author={Jilai Zheng and Chao Ma and Houwen Peng and Xiaokang Yang},
   booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
   year={2021}
}

Reference

We refer to the following repositories when implementing our unsupervised tracker. Thanks for their great work.

Contact

Feel free to contact me if you have any questions.

Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022