Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Overview

Semantic Segmentation on MIT ADE20K dataset in PyTorch

This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing dataset (http://sceneparsing.csail.mit.edu/).

ADE20K is the largest open source dataset for semantic segmentation and scene parsing, released by MIT Computer Vision team. Follow the link below to find the repository for our dataset and implementations on Caffe and Torch7: https://github.com/CSAILVision/sceneparsing

If you simply want to play with our demo, please try this link: http://scenesegmentation.csail.mit.edu You can upload your own photo and parse it!

You can also use this colab notebook playground here to tinker with the code for segmenting an image.

You can reach the dataset here.

All pretrained models can be found at: http://sceneparsing.csail.mit.edu/model/pytorch

[From left to right: Test Image, Ground Truth, Predicted Result]

Color encoding of semantic categories can be found here: https://docs.google.com/spreadsheets/d/1se8YEtb2detS7OuPE86fXGyD269pMycAWe2mtKUj2W8/edit?usp=sharing

Updates

  • HRNet model is now supported.
  • We use configuration files to store most options which were in argument parser. The definitions of options are detailed in config/defaults.py.
  • We conform to Pytorch practice in data preprocessing (RGB [0, 1], substract mean, divide std).

Highlights

Syncronized Batch Normalization on PyTorch

This module computes the mean and standard-deviation across all devices during training. We empirically find that a reasonable large batch size is important for segmentation. We thank Jiayuan Mao for his kind contributions, please refer to Synchronized-BatchNorm-PyTorch for details.

The implementation is easy to use as:

  • It is pure-python, no C++ extra extension libs.
  • It is completely compatible with PyTorch's implementation. Specifically, it uses unbiased variance to update the moving average, and use sqrt(max(var, eps)) instead of sqrt(var + eps).
  • It is efficient, only 20% to 30% slower than UnsyncBN.

Dynamic scales of input for training with multiple GPUs

For the task of semantic segmentation, it is good to keep aspect ratio of images during training. So we re-implement the DataParallel module, and make it support distributing data to multiple GPUs in python dict, so that each gpu can process images of different sizes. At the same time, the dataloader also operates differently.

Now the batch size of a dataloader always equals to the number of GPUs, each element will be sent to a GPU. It is also compatible with multi-processing. Note that the file index for the multi-processing dataloader is stored on the master process, which is in contradict to our goal that each worker maintains its own file list. So we use a trick that although the master process still gives dataloader an index for __getitem__ function, we just ignore such request and send a random batch dict. Also, the multiple workers forked by the dataloader all have the same seed, you will find that multiple workers will yield exactly the same data, if we use the above-mentioned trick directly. Therefore, we add one line of code which sets the defaut seed for numpy.random before activating multiple worker in dataloader.

State-of-the-Art models

  • PSPNet is scene parsing network that aggregates global representation with Pyramid Pooling Module (PPM). It is the winner model of ILSVRC'16 MIT Scene Parsing Challenge. Please refer to https://arxiv.org/abs/1612.01105 for details.
  • UPerNet is a model based on Feature Pyramid Network (FPN) and Pyramid Pooling Module (PPM). It doesn't need dilated convolution, an operator that is time-and-memory consuming. Without bells and whistles, it is comparable or even better compared with PSPNet, while requiring much shorter training time and less GPU memory. Please refer to https://arxiv.org/abs/1807.10221 for details.
  • HRNet is a recently proposed model that retains high resolution representations throughout the model, without the traditional bottleneck design. It achieves the SOTA performance on a series of pixel labeling tasks. Please refer to https://arxiv.org/abs/1904.04514 for details.

Supported models

We split our models into encoder and decoder, where encoders are usually modified directly from classification networks, and decoders consist of final convolutions and upsampling. We have provided some pre-configured models in the config folder.

Encoder:

  • MobileNetV2dilated
  • ResNet18/ResNet18dilated
  • ResNet50/ResNet50dilated
  • ResNet101/ResNet101dilated
  • HRNetV2 (W48)

Decoder:

  • C1 (one convolution module)
  • C1_deepsup (C1 + deep supervision trick)
  • PPM (Pyramid Pooling Module, see PSPNet paper for details.)
  • PPM_deepsup (PPM + deep supervision trick)
  • UPerNet (Pyramid Pooling + FPN head, see UperNet for details.)

Performance:

IMPORTANT: The base ResNet in our repository is a customized (different from the one in torchvision). The base models will be automatically downloaded when needed.

Architecture MultiScale Testing Mean IoU Pixel Accuracy(%) Overall Score Inference Speed(fps)
MobileNetV2dilated + C1_deepsup No 34.84 75.75 54.07 17.2
Yes 33.84 76.80 55.32 10.3
MobileNetV2dilated + PPM_deepsup No 35.76 77.77 56.27 14.9
Yes 36.28 78.26 57.27 6.7
ResNet18dilated + C1_deepsup No 33.82 76.05 54.94 13.9
Yes 35.34 77.41 56.38 5.8
ResNet18dilated + PPM_deepsup No 38.00 78.64 58.32 11.7
Yes 38.81 79.29 59.05 4.2
ResNet50dilated + PPM_deepsup No 41.26 79.73 60.50 8.3
Yes 42.14 80.13 61.14 2.6
ResNet101dilated + PPM_deepsup No 42.19 80.59 61.39 6.8
Yes 42.53 80.91 61.72 2.0
UperNet50 No 40.44 79.80 60.12 8.4
Yes 41.55 80.23 60.89 2.9
UperNet101 No 42.00 80.79 61.40 7.8
Yes 42.66 81.01 61.84 2.3
HRNetV2 No 42.03 80.77 61.40 5.8
Yes 43.20 81.47 62.34 1.9

The training is benchmarked on a server with 8 NVIDIA Pascal Titan Xp GPUs (12GB GPU memory), the inference speed is benchmarked a single NVIDIA Pascal Titan Xp GPU, without visualization.

Environment

The code is developed under the following configurations.

  • Hardware: >=4 GPUs for training, >=1 GPU for testing (set [--gpus GPUS] accordingly)
  • Software: Ubuntu 16.04.3 LTS, CUDA>=8.0, Python>=3.5, PyTorch>=0.4.0
  • Dependencies: numpy, scipy, opencv, yacs, tqdm

Quick start: Test on an image using our trained model

  1. Here is a simple demo to do inference on a single image:
chmod +x demo_test.sh
./demo_test.sh

This script downloads a trained model (ResNet50dilated + PPM_deepsup) and a test image, runs the test script, and saves predicted segmentation (.png) to the working directory.

  1. To test on an image or a folder of images ($PATH_IMG), you can simply do the following:
python3 -u test.py --imgs $PATH_IMG --gpu $GPU --cfg $CFG

Training

  1. Download the ADE20K scene parsing dataset:
chmod +x download_ADE20K.sh
./download_ADE20K.sh
  1. Train a model by selecting the GPUs ($GPUS) and configuration file ($CFG) to use. During training, checkpoints by default are saved in folder ckpt.
python3 train.py --gpus $GPUS --cfg $CFG 
  • To choose which gpus to use, you can either do --gpus 0-7, or --gpus 0,2,4,6.

For example, you can start with our provided configurations:

  • Train MobileNetV2dilated + C1_deepsup
python3 train.py --gpus GPUS --cfg config/ade20k-mobilenetv2dilated-c1_deepsup.yaml
  • Train ResNet50dilated + PPM_deepsup
python3 train.py --gpus GPUS --cfg config/ade20k-resnet50dilated-ppm_deepsup.yaml
  • Train UPerNet101
python3 train.py --gpus GPUS --cfg config/ade20k-resnet101-upernet.yaml
  1. You can also override options in commandline, for example python3 train.py TRAIN.num_epoch 10 .

Evaluation

  1. Evaluate a trained model on the validation set. Add VAL.visualize True in argument to output visualizations as shown in teaser.

For example:

  • Evaluate MobileNetV2dilated + C1_deepsup
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-mobilenetv2dilated-c1_deepsup.yaml
  • Evaluate ResNet50dilated + PPM_deepsup
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-resnet50dilated-ppm_deepsup.yaml
  • Evaluate UPerNet101
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-resnet101-upernet.yaml

Integration with other projects

This library can be installed via pip to easily integrate with another codebase

pip install git+https://github.com/CSAILVision/[email protected]

Now this library can easily be consumed programmatically. For example

from mit_semseg.config import cfg
from mit_semseg.dataset import TestDataset
from mit_semseg.models import ModelBuilder, SegmentationModule

Reference

If you find the code or pre-trained models useful, please cite the following papers:

Semantic Understanding of Scenes through ADE20K Dataset. B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba. International Journal on Computer Vision (IJCV), 2018. (https://arxiv.org/pdf/1608.05442.pdf)

@article{zhou2018semantic,
  title={Semantic understanding of scenes through the ade20k dataset},
  author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Xiao, Tete and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
  journal={International Journal on Computer Vision},
  year={2018}
}

Scene Parsing through ADE20K Dataset. B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso and A. Torralba. Computer Vision and Pattern Recognition (CVPR), 2017. (http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf)

@inproceedings{zhou2017scene,
    title={Scene Parsing through ADE20K Dataset},
    author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2017}
}
Owner
Berat Eren Terzioğlu
AI & Computer Vision Engineer
Berat Eren Terzioğlu
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022