[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

Overview

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models

License: MIT

Codes for this paper The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models. [CVPR 2021]

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang.

Overview

Can we aggressively trim down the complexity of pre-trained models, without damaging their downstream transferability?

Transfer Learning for Winning Tickets from Supervised and Self-supervised Pre-training

Downstream classification tasks.

Downstream detection and segmentation tasks.

Properties of Pre-training Tickets

Reproduce

Preliminary

Required environment:

  • pytorch >= 1.5.0
  • torchvision

Pre-trained Models

Pre-trained models are provided here.

imagenet_weight.pt # torchvision std model

moco.pt # pretrained moco v2 model (only contain encorder_q)

moco_v2_800ep_pretrain.pth.tar # pretrained moco v2 model (contain encorder_q&k)

simclr_weight.pt # (pretrained_simclr weight)

Task-Specific Tickets Finding

Remark. for both pre-training tasks and downstream tasks.

Iterative Magnitude Pruning

SimCLR task
cd SimCLR 
python -u main.py \
    [experiment name] \ 
    --gpu 0,1,2,3 \    
    --epochs 180 \
    --prun_epoch 10 \ # pruning for ( 1 + 180/10 iterations)
    --prun_percent 0.2 \
    --lr 1e-4 \
    --arch resnet50 \
    --batch_size 256 \
    --data [data direction] \
    --sim_model [pretrained_simclr_model] \
    --save_dir simclr_imp
MoCo task
cd MoCo
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_moco_imp.py \
	[Dataset Direction] \
	--pretrained_path [pretrained_moco_model] \
    -a resnet50 \
    --batch-size 256 \
    --dist-url 'tcp://127.0.0.1:5234' \
    --multiprocessing-distributed \
    --world-size 1 \
    --rank 0 \
    --mlp \
    --moco-t 0.2 \
    --aug-plus \
    --cos \
    --epochs 180 \
    --retrain_epoch 10 \ # pruning for ( 1 + 180/10 iterations)
    --save_dir moco_imp
Classification task on ImageNet
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_imp_imagenet.py \
	[Dataset Direction] \
	-a resnet50 \
	--epochs 10 \
	-b 256 \
	--lr 1e-4 \
	--states 19 \ # iterative pruning times 
	--save_dir imagenet_imp
Classification task on Visda2017
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_imp_visda.py \
	[Dataset Direction] \
	-a resnet50 \
	--epochs 20 \
	-b 256 \
	--lr 0.001 \
	--prune_type lt \ # lt or pt_trans
	--pre_weight [pretrained weight] \ # if pt_trans else None
	--states 19 \ # iterative pruning times
	--save_dir visda_imp
Classification task on small dataset
CUDA_VISIBLE_DEVICES=0 python -u main_imp_downstream.py \
	--data [dataset direction] \
	--dataset [dataset name] \#cifar10, cifar100, svhn, fmnist 
	--arch resnet50 \
	--pruning_times 19 \
	--prune_type [lt, pt, rewind_lt, pt_trans] \
	--save_dir imp_downstream \
	# --pretrained [pretrained weight if prune_type==pt_trans] \
	# --random_prune [if using random pruning] \
    # --rewind_epoch [rewind weight epoch if prune_type==rewind_lt] \

Transfer to Downstream Tasks

Small datasets: (e.g., CIFAR-10, CIFAR-100, SVHN, Fashion-MNIST)
CUDA_VISIBLE_DEVICES=0 python -u main_eval_downstream.py \
	--data [dataset direction] \
	--dataset [dataset name] \#cifar10, cifar100, svhn, fmnist 
	--arch resnet50 \
	--save_dir [save_direction] \
	--pretrained [init weight] \
	--dict_key state_dict [ dict_key in pretrained file, None means load all ] \
	--mask_dir [mask for ticket] \
	--reverse_mask \ #if want to reverse mask
Visda2017:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_eval_visda.py \
	[data direction] \
	-a resnet50 \
	--epochs 20 \
	-b 256 \
	--lr 0.001 \
	--save_dir [save_direction] \
	--pretrained [init weight] \
	--dict_key state_dict [ dict_key in pretrained file, None means load all ] \
	--mask_dir [mask for ticket] \
	--reverse_mask \ #if want to reverse mask

Detection and Segmentation Experiments

Detials of YOLOv4 for detection are collected here.

Detials of DeepLabv3+ for segmentation are collected here.

Citation

@article{chen2020lottery,
  title={The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models},
  author={Chen, Tianlong and Frankle, Jonathan and Chang, Shiyu and Liu, Sijia and Zhang, Yang and Carbin, Michael and Wang, Zhangyang},
  journal={arXiv preprint arXiv:2012.06908},
  year={2020}
}

Acknowledgement

https://github.com/google-research/simclr

https://github.com/facebookresearch/moco

https://github.com/VainF/DeepLabV3Plus-Pytorch

https://github.com/argusswift/YOLOv4-pytorch

https://github.com/yczhang1017/SSD_resnet_pytorch/tree/master

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022