[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

Overview

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models

License: MIT

Codes for this paper The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models. [CVPR 2021]

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang.

Overview

Can we aggressively trim down the complexity of pre-trained models, without damaging their downstream transferability?

Transfer Learning for Winning Tickets from Supervised and Self-supervised Pre-training

Downstream classification tasks.

Downstream detection and segmentation tasks.

Properties of Pre-training Tickets

Reproduce

Preliminary

Required environment:

  • pytorch >= 1.5.0
  • torchvision

Pre-trained Models

Pre-trained models are provided here.

imagenet_weight.pt # torchvision std model

moco.pt # pretrained moco v2 model (only contain encorder_q)

moco_v2_800ep_pretrain.pth.tar # pretrained moco v2 model (contain encorder_q&k)

simclr_weight.pt # (pretrained_simclr weight)

Task-Specific Tickets Finding

Remark. for both pre-training tasks and downstream tasks.

Iterative Magnitude Pruning

SimCLR task
cd SimCLR 
python -u main.py \
    [experiment name] \ 
    --gpu 0,1,2,3 \    
    --epochs 180 \
    --prun_epoch 10 \ # pruning for ( 1 + 180/10 iterations)
    --prun_percent 0.2 \
    --lr 1e-4 \
    --arch resnet50 \
    --batch_size 256 \
    --data [data direction] \
    --sim_model [pretrained_simclr_model] \
    --save_dir simclr_imp
MoCo task
cd MoCo
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_moco_imp.py \
	[Dataset Direction] \
	--pretrained_path [pretrained_moco_model] \
    -a resnet50 \
    --batch-size 256 \
    --dist-url 'tcp://127.0.0.1:5234' \
    --multiprocessing-distributed \
    --world-size 1 \
    --rank 0 \
    --mlp \
    --moco-t 0.2 \
    --aug-plus \
    --cos \
    --epochs 180 \
    --retrain_epoch 10 \ # pruning for ( 1 + 180/10 iterations)
    --save_dir moco_imp
Classification task on ImageNet
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_imp_imagenet.py \
	[Dataset Direction] \
	-a resnet50 \
	--epochs 10 \
	-b 256 \
	--lr 1e-4 \
	--states 19 \ # iterative pruning times 
	--save_dir imagenet_imp
Classification task on Visda2017
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_imp_visda.py \
	[Dataset Direction] \
	-a resnet50 \
	--epochs 20 \
	-b 256 \
	--lr 0.001 \
	--prune_type lt \ # lt or pt_trans
	--pre_weight [pretrained weight] \ # if pt_trans else None
	--states 19 \ # iterative pruning times
	--save_dir visda_imp
Classification task on small dataset
CUDA_VISIBLE_DEVICES=0 python -u main_imp_downstream.py \
	--data [dataset direction] \
	--dataset [dataset name] \#cifar10, cifar100, svhn, fmnist 
	--arch resnet50 \
	--pruning_times 19 \
	--prune_type [lt, pt, rewind_lt, pt_trans] \
	--save_dir imp_downstream \
	# --pretrained [pretrained weight if prune_type==pt_trans] \
	# --random_prune [if using random pruning] \
    # --rewind_epoch [rewind weight epoch if prune_type==rewind_lt] \

Transfer to Downstream Tasks

Small datasets: (e.g., CIFAR-10, CIFAR-100, SVHN, Fashion-MNIST)
CUDA_VISIBLE_DEVICES=0 python -u main_eval_downstream.py \
	--data [dataset direction] \
	--dataset [dataset name] \#cifar10, cifar100, svhn, fmnist 
	--arch resnet50 \
	--save_dir [save_direction] \
	--pretrained [init weight] \
	--dict_key state_dict [ dict_key in pretrained file, None means load all ] \
	--mask_dir [mask for ticket] \
	--reverse_mask \ #if want to reverse mask
Visda2017:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_eval_visda.py \
	[data direction] \
	-a resnet50 \
	--epochs 20 \
	-b 256 \
	--lr 0.001 \
	--save_dir [save_direction] \
	--pretrained [init weight] \
	--dict_key state_dict [ dict_key in pretrained file, None means load all ] \
	--mask_dir [mask for ticket] \
	--reverse_mask \ #if want to reverse mask

Detection and Segmentation Experiments

Detials of YOLOv4 for detection are collected here.

Detials of DeepLabv3+ for segmentation are collected here.

Citation

@article{chen2020lottery,
  title={The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models},
  author={Chen, Tianlong and Frankle, Jonathan and Chang, Shiyu and Liu, Sijia and Zhang, Yang and Carbin, Michael and Wang, Zhangyang},
  journal={arXiv preprint arXiv:2012.06908},
  year={2020}
}

Acknowledgement

https://github.com/google-research/simclr

https://github.com/facebookresearch/moco

https://github.com/VainF/DeepLabV3Plus-Pytorch

https://github.com/argusswift/YOLOv4-pytorch

https://github.com/yczhang1017/SSD_resnet_pytorch/tree/master

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022