Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Overview

Exploring Image Deblurring via Encoded Blur Kernel Space

About the project

We introduce a method to encode the blur operators of an arbitrary dataset of sharp-blur image pairs into a blur kernel space. Assuming the encoded kernel space is close enough to in-the-wild blur operators, we propose an alternating optimization algorithm for blind image deblurring. It approximates an unseen blur operator by a kernel in the encoded space and searches for the corresponding sharp image. Due to the method's design, the encoded kernel space is fully differentiable, thus can be easily adopted in deep neural network models.

Blur kernel space

Detail of the method and experimental results can be found in our following paper:

@inproceedings{m_Tran-etal-CVPR21, 
  author = {Phong Tran and Anh Tran and Quynh Phung and Minh Hoai}, 
  title = {Explore Image Deblurring via Encoded Blur Kernel Space}, 
  year = {2021}, 
  booktitle = {Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)} 
}

Please CITE our paper whenever this repository is used to help produce published results or incorporated into other software.

Open In Colab

Table of Content

Getting started

Prerequisites

  • Python >= 3.7
  • Pytorch >= 1.4.0
  • CUDA >= 10.0

Installation

git clone https://github.com/VinAIResearch/blur-kernel-space-exploring.git
cd blur-kernel-space-exploring


conda create -n BlurKernelSpace -y python=3.7
conda activate BlurKernelSpace
conda install --file requirements.txt

Training and evaluation

Preparing datasets

You can download the datasets in the model zoo section.

To use your customized dataset, your dataset must be organized as follow:

root
├── blur_imgs
    ├── 000
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
    ├── 001
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
├── sharp_imgs
    ├── 000
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
    ├── 001
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...

where root, blur_imgs, and sharp_imgs folders can have arbitrary names. For example, let root, blur_imgs, sharp_imgs be REDS, train_blur, train_sharp respectively (That is, you are using the REDS training set), then use the following scripts to create the lmdb dataset:

python create_lmdb.py --H 720 --W 1280 --C 3 --img_folder REDS/train_sharp --name train_sharp_wval --save_path ../datasets/REDS/train_sharp_wval.lmdb
python create_lmdb.py --H 720 --W 1280 --C 3 --img_folder REDS/train_blur --name train_blur_wval --save_path ../datasets/REDS/train_blur_wval.lmdb

where (H, C, W) is the shape of the images (note that all images in the dataset must have the same shape), img_folder is the folder that contains the images, name is the name of the dataset, and save_path is the save destination (save_path must end with .lmdb).

When the script is finished, two folders train_sharp_wval.lmdb and train_blur_wval.lmdb will be created in ./REDS.

Training

To do image deblurring, data augmentation, and blur generation, you first need to train the blur encoding network (The F function in the paper). This is the only network that you need to train. After creating the dataset, change the value of dataroot_HQ and dataroot_LQ in options/kernel_encoding/REDS/woVAE.yml to the paths of the sharp and blur lmdb datasets that were created before, then use the following script to train the model:

python train.py -opt options/kernel_encoding/REDS/woVAE.yml

where opt is the path to yaml file that contains training configurations. You can find some default configurations in the options folder. Checkpoints, training states, and logs will be saved in experiments/modelName. You can change the configurations (learning rate, hyper-parameters, network structure, etc) in the yaml file.

Testing

Data augmentation

To augment a given dataset, first, create an lmdb dataset using scripts/create_lmdb.py as before. Then use the following script:

python data_augmentation.py --target_H=720 --target_W=1280 \
			    --source_H=720 --source_W=1280\
			    --augmented_H=256 --augmented_W=256\
                            --source_LQ_root=datasets/REDS/train_blur_wval.lmdb \
                            --source_HQ_root=datasets/REDS/train_sharp_wval.lmdb \
			    --target_HQ_root=datasets/REDS/test_sharp_wval.lmdb \
                            --save_path=results/GOPRO_augmented \
                            --num_images=10 \
                            --yml_path=options/data_augmentation/default.yml

(target_H, target_W), (source_H, source_W), and (augmented_H, augmented_W) are the desired shapes of the target images, source images, and augmented images respectively. source_LQ_root, source_HQ_root, and target_HQ_root are the paths of the lmdb datasets for the reference blur-sharp pairs and the input sharp images that were created before. num_images is the size of the augmented dataset. model_path is the path of the trained model. yml_path is the path to the model configuration file. Results will be saved in save_path.

Data augmentation examples

Generate novel blur kernels

To generate a blur image given a sharp image, use the following command:

python generate_blur.py --yml_path=options/generate_blur/default.yml \
		        --image_path=imgs/sharp_imgs/mushishi.png \
			--num_samples=10
			--save_path=./res.png

where model_path is the path of the pre-trained model, yml_path is the path of the configuration file. image_path is the path of the sharp image. After running the script, a blur image corresponding to the sharp image will be saved in save_path. Here is some expected output: kernel generating examples Note: This only works with models that were trained with --VAE flag. The size of input images must be divisible by 128.

Generic Deblurring

To deblur a blurry image, use the following command:

python generic_deblur.py --image_path imgs/blur_imgs/blur1.png --yml_path options/generic_deblur/default.yml --save_path ./res.png

where image_path is the path of the blurry image. yml_path is the path of the configuration file. The deblurred image will be saved to save_path.

Image deblurring examples

Deblurring using sharp image prior

First, you need to download the pre-trained styleGAN or styleGAN2 networks. If you want to use styleGAN, download the mapping and synthesis networks, then rename and copy them to experiments/pretrained/stylegan_mapping.pt and experiments/pretrained/stylegan_synthesis.pt respectively. If you want to use styleGAN2 instead, download the pretrained model, then rename and copy it to experiments/pretrained/stylegan2.pt.

To deblur a blurry image using styleGAN latent space as the sharp image prior, you can use one of the following commands:

python domain_specific_deblur.py --input_dir imgs/blur_faces \
		    --output_dir experiments/domain_specific_deblur/results \
		    --yml_path options/domain_specific_deblur/stylegan.yml  # Use latent space of stylegan
python domain_specific_deblur.py --input_dir imgs/blur_faces \
		    --output_dir experiments/domain_specific_deblur/results \
		    --yml_path options/domain_specific_deblur/stylegan2.yml  # Use latent space of stylegan2

Results will be saved in experiments/domain_specific_deblur/results. Note: Generally, the code still works with images that have the size divisible by 128. However, since our blur kernels are not uniform, the size of the kernel increases as the size of the image increases.

PULSE-like Deblurring examples

Model Zoo

Pretrained models and corresponding datasets are provided in the below table. After downloading the datasets and models, follow the instructions in the testing section to do data augmentation, generating blur images, or image deblurring.

Model name dataset(s) status
REDS woVAE REDS ✔️
GOPRO woVAE GOPRO ✔️
GOPRO wVAE GOPRO ✔️
GOPRO + REDS woVAE GOPRO, REDS ✔️

Notes and references

The training code is borrowed from the EDVR project: https://github.com/xinntao/EDVR

The backbone code is borrowed from the DeblurGAN project: https://github.com/KupynOrest/DeblurGAN

The styleGAN code is borrowed from the PULSE project: https://github.com/adamian98/pulse

The stylegan2 code is borrowed from https://github.com/rosinality/stylegan2-pytorch

Owner
VinAI Research
VinAI Research
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022