RLBot Python bindings for the Rust crate rl_ball_sym

Overview

RLBot Python bindings for rl_ball_sym 0.6

Prerequisites:

Steps to build the Python bindings

  1. Download this repository
  2. Run cargo_build_release.bat
  3. A new file, called rl_ball_sym.pyd, will appear
  4. Copy rl_ball_sym.pyd to your Python project's source folder
  5. import rl_ball_sym in your Python file

Basic usage in an RLBot script to render the path prediction

See script.cfg and script.py for a pre-made script that renders the framework's ball path prediction in green and the rl_ball_sym's ball path prediction in red.

from traceback import print_exc

from rlbot.agents.base_script import BaseScript
from rlbot.utils.structures.game_data_struct import GameTickPacket

import rl_ball_sym as rlbs


class rl_ball_sym(BaseScript):
    def __init__(self):
        super().__init__("rl_ball_sym")

    def main(self):
        rlbs.load_soccar()

        while 1:
            try:
                self.packet: GameTickPacket = self.wait_game_tick_packet()
                current_location = self.packet.game_ball.physics.location
                current_velocity = self.packet.game_ball.physics.velocity
                current_angular_velocity = self.packet.game_ball.physics.angular_velocity

                rlbs.set_ball({
                    "time": self.packet.game_info.seconds_elapsed,
                    "location": [current_location.x, current_location.y, current_location.z],
                    "velocity": [current_velocity.x, current_velocity.y, current_velocity.z],
                    "angular_velocity": [current_angular_velocity.x, current_angular_velocity.y, current_angular_velocity.z],
                })

                path_prediction = rlbs.get_ball_prediction_struct()

                self.renderer.begin_rendering()
                self.renderer.draw_polyline_3d(tuple((path_prediction["slices"][i]["location"][0], path_prediction["slices"][i]["location"][1], path_prediction["slices"][i]["location"][2]) for i in range(0, path_prediction["num_slices"], 4)), self.renderer.red())
                self.renderer.end_rendering()
            except Exception:
                print_exc()


if __name__ == "__main__":
    rl_ball_sym = rl_ball_sym()
    rl_ball_sym.main()

Example ball prediction struct

Normal

[
    {
        "time": 0.008333,
        "location": [
            -2283.9,
            1683.8,
            323.4,
        ],
        "velocity": [
            1273.4,
            -39.7,
            757.6,
        ]
    },
    {
        "time": 0.025,
        "location": [
            -2262.6,
            1683.1,
            335.9,
        ],
        "velocity": [
            1272.7,
            -39.7,
            746.4,
        ]
    }
    ...
]

Full

[
    {
        "time": 0.008333,
        "location": [
            -2283.9,
            1683.8,
            323.4,
        ],
        "velocity": [
            1273.4,
            -39.7,
            757.6,
        ]
        "angular_velocity": [
            2.3,
            -0.8,
            3.8,
        }
    },
    {
        "time": 0.016666,
        "location": [
            -2273.3,
            1683.4,
            329.7,
        ],
        "velocity": [
            1273.1,
            -39.7,
            752.0,
        ],
        "angular_velocity": [
            2.3,
            -0.8,
            3.8
        ]
    }
    ...
]

__doc__

Returns the string rl_ball_sym is a Rust implementation of ball path prediction for Rocket League; Inspired by Samuel (Chip) P. Mish's C++ utils called RLUtilities

load_soccar

Loads in the field for a standard soccar game.

load_dropshot

Loads in the field for a standard dropshot game.

load_hoops

Loads in the field for a standard hoops game.

set_ball

Sets information related to the ball. Accepts a Python dictionary. You don't have to set everything - you can exclude keys at will.

time

The seconds that the game has elapsed for.

location

The ball's location, in an array in the format [x, y, z].

velocity

The ball's velocity, in an array in the format [x, y, z].

angular_velocity

The ball's angular velocity, in an array in the format [x, y, z].

radius

The ball's radius.

Defaults:

  • Soccar - 91.25
  • Dropshot - 100.45
  • Hoops - 91.25

collision_radius

The ball's collision radius.

Defaults:

  • Soccar - 93.15
  • Dropshot - 103.6
  • Hoops - 93.15

set_gravity

Sets information about game's gravity.

Accepts an array in the format [x, y, z].

step_ball

Steps the ball by 1/120 seconds into the future every time it's called.

For convience, also returns the new information about the ball.

Example:

{
    "time": 0.008333,
    "location": [
        -2283.9,
        1683.8,
        323.4,
    ],
    "velocity": [
        1273.4,
        -39.7,
        757.6,
    ]
    "angular_velocity": [
        2.3,
        -0.8,
        3.8,
    }
}

get_ball_prediction_struct

Equivalent to calling step_ball() 720 times (6 seconds).

Returns a normal-type ball prediction struct.

get_ball_prediction_struct takes 0.3ms to execute

get_ball_prediction_struct_full

Equivalent to calling step_ball() 720 times (6 seconds).

Returns a full-type ball prediction struct.

get_ball_prediction_struct_full takes 0.54ms to execute

get_ball_prediction_struct_for_time

Equivalent to calling step_ball() 120 * time times.

Returns a normal-type ball prediction struct.

time

The seconds into the future that the ball path prediction should be generated.

get_ball_prediction_struct_full_for_time

Equivalent to calling step_ball() 120 * time times.

Returns a full-type ball prediction struct.

time

The seconds into the future that the ball path prediction should be generated.

You might also like...
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

A fast python implementation of Ray Tracing in One Weekend using python and Taichi
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

Technical Indicators implemented in Python only using Numpy-Pandas as Magic  - Very Very Fast! Very tiny!  Stock Market Financial Technical Analysis Python library .  Quant Trading automation or cryptocoin exchange
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Releases(v1.0.0)
Owner
Eric Veilleux
I know HTML/CSS/JS, Java, Python, C, and Rust.
Eric Veilleux
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021