Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

Overview

SegSwap

Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

[PDF] [Project page]

teaser

teaser

If our project is helpful for your research, please consider citing :

@article{shen2021learning,
  title={Learning Co-segmentation by Segment Swapping for Retrieval and Discovery},
  author={Shen, Xi and Efros, Alexei A and Joulin, Armand and Aubry, Mathieu},
  journal={arXiv},
  year={2021}

Table of Content

1. Installation

1.1. Dependencies

Our model can be learnt on a a single GPU Tesla-V100-16GB. The code has been tested in Pytorch 1.7.1 + cuda 10.2

Other dependencies can be installed via (tqdm, kornia, opencv-python, scipy) :

bash requirement.sh

1.2. Pre-trained MocoV2-resnet50 + cross-transformer (~300M)

Quick download :

cd model/pretrained
bash download_model.sh

2. Training Data Generation

2.1. Download COCO (~20G)

This command will download coco2017 training set + annotations (~20G).

cd data/COCO2017/download_coco.sh
bash download_coco.sh

2.2. Image Pairs with One Repeated Object

2.2.1 Generating 100k pairs (~18G)

This command will generate 100k image pairs with one repeated object.

cd data/
python generate_1obj.py --out-dir pairs_1obj_100k 

2.2.1 Examples of image pairs

Source Blended Obj + Background Stylised Source Stylised Background

2.2.2 Visualizing correspondences and masks of the generated pairs

This command will generate 10 pairs and visualize correspondences and masks of the pairs.

cd data/
bash vis_pair.sh

These pairs can be illustrated via vis10_1obj/vis.html

2.3. Image Pairs with Two Repeated Object

2.3.1 Generating 100k pairs (~18G)

This command will generate 100k image pairs with one repeated object.

cd data/
python generate_2obj.py --out-dir pairs_2obj_100k 

2.3.1 Examples of image pairs

Source Blended Obj + Background Stylised Source Stylised Background

2.3.2 Visualizing correspondences and masks of the generated pairs

This command will generate 10 pairs and visualize correspondences and masks of the pairs.

cd data/
bash vis_pair.sh

These pairs can be illustrated via vis10_2obj/vis.html

3. Evaluation

3.1 One-shot Art Detail Detection on Brueghel Dataset

3.1.1 Visual results: top-3 retrieved images

teaser

3.1.2 Data

Brueghel dataset has been uploaded in this repo

3.1.3 Quantitative results

The following command conduct evaluation on Brueghel with pre-trained cross-transformer:

cd evalBrueghel
python evalBrueghel.py --out-coarse out_brueghel.json --resume-pth ../model/hard_mining_neg5.pth --label-pth ../data/Brueghel/brueghelTest.json

Note that this command will save the features of Brueghel(~10G).

3.2 Place Recognition on Tokyo247 Dataset

3.2.1 Visual results: top-3 retrieved images

teaser

3.2.2 Data

Download Tokyo247 from its project page

Download the top-100 results used by patchVlad(~1G).

The data needs to be organised:

./SegSwap/data/Tokyo247
                    ├── query/
                        ├── 247query_subset_v2/
                    ├── database/
...

./SegSwap/evalTokyo
                    ├── top100_patchVlad.npy

3.2.3 Quantitative results

The following command conduct evaluation on Tokyo247 with pre-trained cross-transformer:

cd evalTokyo
python evalTokyo.py --qry-dir ../data/Tokyo247/query/247query_subset_v2 --db-dir ../data/Tokyo247/database --resume-pth ../model/hard_mining_neg5.pth

3.3 Place Recognition on Pitts30K Dataset

3.3.1 Visual results: top-3 retrieved images

teaser

3.3.2 Data

Download Pittsburgh dataset from its project page

Download the top-100 results used by patchVlad (~4G).

The data needs to be organised:

./SegSwap/data/Pitts
                ├── queries_real/
...

./SegSwap/evalPitts
                    ├── top100_patchVlad.npy

3.3.3 Quantitative results

The following command conduct evaluation on Pittsburgh30K with pre-trained cross-transformer:

cd evalPitts
python evalPitts.py --qry-dir ../data/Pitts/queries_real --db-dir ../data/Pitts --resume-pth ../model/hard_mining_neg5.pth

3.4 Discovery on Internet Dataset

3.4.1 Visual results

teaser

3.4.2 Data

Download Internet dataset from its project page

We provide a script to quickly download and preprocess the data (~400M):

cd data/Internet
bash download_int.sh

The data needs to be organised:

./SegSwap/data/Internet
                ├── Airplane100
                    ├── GroundTruth                
                ├── Horse100
                    ├── GroundTruth                
                ├── Car100
                    ├── GroundTruth                                

3.4.3 Quantitative results

The following commands conduct evaluation on Internet with pre-trained cross-transformer

cd evalInt
bash run_pair_480p.sh
bash run_best_only_cycle.sh

4. Training

Stage 1: standard training

Supposing that the generated pairs are saved in ./SegSwap/data/pairs_1obj_100k and ./SegSwap/data/pairs_2obj_100k.

Training command can be found in ./SegSwap/train/run.sh.

Note that this command should be able to be launched on a single GPU with 16G memory.

cd train
bash run.sh

Stage 2: hard mining

In train/run_hardmining.sh, replacing --resume-pth by the model trained in the 1st stage, than running:

cd train
bash run_hardmining.sh

5. Acknowledgement

We appreciate helps from :

Part of code is borrowed from our previous projects: ArtMiner and Watermark

6. ChangeLog

  • 21/10/21, model, evaluation + training released

7. License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including Kornia, Pytorch, and uses datasets which each have their own respective licenses that must also be followed.

Owner
xshen
Ph.D, Computer Vision, Deep Learning.
xshen
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023